K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2023

a) Ta thấy: \(\left|\dfrac{2}{5}-x\right|\ge0\forall x\)

\(\Rightarrow Q=\dfrac{9}{2}+\left|\dfrac{2}{5}-x\right|\ge\dfrac{9}{2}\forall x\)

Dấu \("="\) xảy ra khi: \(\left|\dfrac{2}{5}-x\right|=0\Leftrightarrow\dfrac{2}{5}-x=0\Leftrightarrow x=\dfrac{2}{5}\)

Vậy \(Min_Q=\dfrac{9}{2}\) khi \(x=\dfrac{2}{5}\).

\(---\)

b) Ta thấy: \(\left|x+\dfrac{2}{3}\right|\ge0\forall x\)

\(\Rightarrow M=\left|x+\dfrac{2}{3}\right|-\dfrac{3}{5}\ge-\dfrac{3}{5}\forall x\)

Dấu \("="\) xảy ra khi: \(\left|x+\dfrac{2}{3}\right|=0\Leftrightarrow x+\dfrac{2}{3}=0\Leftrightarrow x=-\dfrac{2}{3}\)

Vậy \(Min_M=-\dfrac{3}{5}\) khi \(x=-\dfrac{2}{3}\).

\(---\)

c) Ta thấy: \(\left|\dfrac{7}{4}-x\right|\ge0\forall x\)

\(\Rightarrow-\left|\dfrac{7}{4}-x\right|\le0\forall x\)

\(\Rightarrow N=-\left|\dfrac{7}{4}-x\right|-8\le-8\forall x\)

Dấu \("="\) xảy ra khi: \(\left|\dfrac{7}{4}-x\right|=0\Leftrightarrow\dfrac{7}{4}-x=0\Leftrightarrow x=\dfrac{7}{4}\)

Vậy \(Max_N=-8\) khi \(x=\dfrac{7}{4}\).

23 tháng 10 2023

a) Ta có: \(\left|\dfrac{2}{5}-x\right|\ge0\forall x\)

\(\Rightarrow Q=\dfrac{9}{2}+\left|\dfrac{2}{5}-x\right|\ge\dfrac{9}{2}\forall x\)

Dấu "=" xảy ra khi:

\(\dfrac{2}{5}-x=0\)

\(\Rightarrow x=\dfrac{2}{5}\)

Vậy: ... 

b) Ta có: \(\left|x+\dfrac{2}{3}\right|\ge0\forall x\)

\(\Rightarrow M=\left|x+\dfrac{2}{3}\right|-\dfrac{3}{5}\ge-\dfrac{3}{5}\)

Dấu "=" xảy ra:

\(x+\dfrac{2}{3}=0\)

\(\Rightarrow x=-\dfrac{2}{3}\)

Vậy: ...

c) Ta có: \(-\left|\dfrac{7}{4}-x\right|\le0\forall x\)

\(\Rightarrow N=-\left|\dfrac{7}{4}-x\right|-8\le-8\)

Dấu "=" xảy ra:

\(\dfrac{7}{4}-x=0\)

\(\Rightarrow x=\dfrac{7}{4}\)

Vậy: ...

17 tháng 10 2019

1. a) Ta có: M  = |x + 15/19| \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19

Vậy MinM = 0 <=> x = -15/19

b) Ta có: N = |x  - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x

Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7

Vậy MinN = -1/2 <=> x = 4/7

17 tháng 10 2019

2a) Ta có: P = -|5/3 - x|  \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3

Vậy MaxP = 0 <=> x = 5/3

b) Ta có: Q = 9 - |x - 1/10| \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10

Vậy MaxQ = 9 <=> x = 1/10

1 tháng 11 2019

Về nhà lm tiếp h sắp chậm học rồi pp nhá.

undefined

1 tháng 11 2019

1.

b) \(B=\left|x+8\right|+\left|x+18\right|+\left|x+50\right|\)

Ta có:

\(B=\left|x+8\right|+\left|x+18\right|+\left|x+50\right|\ge\left(\left|x+8\right|+\left|-50-x\right|\right)+\left|x+18\right|\)

\(\Rightarrow B=\left(\left|x+8-50-x\right|\right)+\left|x+18\right|\)

\(\Rightarrow B=\left|-42\right|+\left|x+18\right|\)

\(\Rightarrow B=42+\left|x+18\right|\ge42\)

\(\Rightarrow MIN_B=42\) khi và chỉ khi:

\(\left\{{}\begin{matrix}x+8\ge0\\x+18=0\\x+50\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge-8\\x=-18\\x\ge-50\end{matrix}\right.\Rightarrow x=-18.\)

Vậy \(MIN_B=42\) khi \(x=-18.\)

3.

b) \(\left|x-3\right|-\left|2x+1\right|=0\)

\(\Rightarrow\left|x-3\right|=\left|2x+1\right|\)

\(\Rightarrow\left[{}\begin{matrix}x-3=2x+1\\x-3=-2x-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x-2x=1+3\\x+2x=\left(-1\right)+3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}-1x=4\\3x=2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=4:\left(-1\right)\\x=2:3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-4\\x=\frac{2}{3}\end{matrix}\right.\)

Vậy \(x\in\left\{-4;\frac{2}{3}\right\}.\)

Chúc bạn học tốt!

16 tháng 7 2016

Bài 2

 \(a,\left(x-3\right)^2=9\Leftrightarrow\left(x-3\right)^2=3^2\Leftrightarrow x-3=3\Leftrightarrow x=6\)

\(b,\left(\frac{1}{2}+x\right)^2=16\Leftrightarrow\left(\frac{1}{2}+x\right)^2=4^2\Leftrightarrow\frac{1}{2}+x=4\Leftrightarrow x=\frac{7}{2}\)

21 tháng 9 2016

Nhận xét : Lũy thừa bậc chẵn hay giá trị tuyệt đối của 1 số hữu tỉ luôn lớn hơn hoặc bằng 0(bằng 0 khi số hữu tỉ đó là 0)

1)\(\left(2x+\frac{1}{3}\right)^4\ge0\Rightarrow\left(2x+\frac{1}{3}\right)^4-10\ge-10\).Vậy GTNN của A là -10 khi :

\(\left(2x+\frac{1}{3}\right)^4=0\Rightarrow2x+\frac{1}{3}=0\Rightarrow2x=\frac{-1}{3}\Rightarrow x=\frac{-1}{6}\)

\(|2x-\frac{2}{3}|\ge0;\left(y+\frac{1}{4}\right)^4\ge0\Rightarrow|2x-\frac{2}{3}|+\left(y+\frac{1}{4}\right)^4-1\ge-1\).Vậy GTNN của B là -1 khi :

\(\hept{\begin{cases}|2x-\frac{2}{3}|=0\Rightarrow2x-\frac{2}{3}=0\Rightarrow2x=\frac{2}{3}\Rightarrow x=\frac{1}{3}\\\left(y+\frac{1}{4}\right)^4=0\Rightarrow y+\frac{1}{4}=0\Rightarrow y=\frac{-1}{4}\end{cases}}\)

2)\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6\ge0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)^6\le0\Rightarrow-\left(\frac{3}{7}x-\frac{4}{15}\right)+3\le3\).Vậy GTLN của C là 3 khi :

\(\left(\frac{3}{7}x-\frac{4}{15}\right)^6=0\Rightarrow\frac{3}{7}x-\frac{4}{15}=0\Rightarrow\frac{3}{7}x=\frac{4}{15}\Rightarrow x=\frac{4}{15}:\frac{3}{7}=\frac{28}{45}\)

\(|x-3|\ge0;|2y+1|\ge0\Rightarrow-|x-3|\le0;-|2y+1|\le0\Rightarrow-|x-3|-|2y+1|+15\le15\)

Vậy GTLN của D là 15 khi :\(\hept{\begin{cases}|x-3|=0\Rightarrow x-3=0\Rightarrow x=3\\|2y+1|=0\Rightarrow2y+1=0\Rightarrow2y=-1\Rightarrow y=\frac{-1}{2}\end{cases}}\)

28 tháng 8 2017

Huhu, mik không biết giải mong bạn thông cảm!

28 tháng 8 2017

câu B bài cuối là D= 1 phần 2|x-1|+3 nha mọi ng

5 tháng 4 2020

Bài 1 :

a) Ta thấy : \(\left(x^2-9\right)^2\ge0\)

                   \(\left|y-2\right|\ge0\)

\(\Leftrightarrow A=\left(x^2-9\right)^2+\left|y-2\right|-1\ge-1\)

Dấu " = " xảy ra :

\(\Leftrightarrow\hept{\begin{cases}x^2-9=0\\y-2=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\in\left\{3;-3\right\}\\y=2\end{cases}}\)

Vậy \(Min_A=-1\Leftrightarrow\left(x;y\right)\in\left\{\left(3;2\right);\left(-3;2\right)\right\}\)

b) Ta thấy : \(B=x^2+4x-100\)

\(=\left(x+4\right)^2-104\ge-104\)

Dấu " = " xảy ra :

\(\Leftrightarrow x+4=0\)

\(\Leftrightarrow x=-4\)

Vậy \(Min_B=-104\Leftrightarrow x=-4\)

c) Ta thấy : \(C=\frac{4-x}{x-3}\)

\(=\frac{3-x+1}{x-3}\)

\(=-1+\frac{1}{x-3}\)

Để C min \(\Leftrightarrow\frac{1}{x-3}\)min

\(\Leftrightarrow x-3\)max

\(\Leftrightarrow x\)max

Vậy để C min \(\Leftrightarrow\)\(x\)max

p/s : riêng câu c mình không tìm được C min :( Mong bạn nào giỏi tìm hộ mình

Bài 2 : 

a) Ta thấy : \(x^2\ge0\)

                  \(\left|y+1\right|\ge0\)

\(\Leftrightarrow3x^2+5\left|y+1\right|-5\ge-5\)

\(\Leftrightarrow C=-3x^2-5\left|y+1\right|+5\le-5\)

Dấu " = " xảy ra :

\(\Leftrightarrow\hept{\begin{cases}x=0\\y+1=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\y=-1\end{cases}}\)

Vậy \(Max_A=-5\Leftrightarrow\left(x;y\right)=\left(0;-1\right)\)

b) Để B max

\(\Leftrightarrow\left(x+3\right)^2+2\)min

Ta thấy : \(\left(x+3\right)^2\ge0\)

\(\Leftrightarrow\left(x+3\right)^2+2\ge2\)

Dấu " = " xảy ra :

\(\Leftrightarrow x+3=0\)

\(\Leftrightarrow x=-3\)

Vậy \(Max_B=\frac{1}{2}\Leftrightarrow x=-3\)

c) Ta thấy : \(\left(x+1\right)^2\ge0\)

\(\Leftrightarrow x^2+2x+1\ge0\)

\(\Leftrightarrow-x^2-2x-1\le0\)

\(\Leftrightarrow C=-x^2-2x+7\le8\)

Dấu " = " xảy ra :

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Vậy \(Max_C=8\Leftrightarrow x=-1\)

19 tháng 3 2017

\(a^2+2ab+b^2=\left(a+b\right)^2\ge0\forall a,b\)

\(a^2-2ab+b^2=\left(a-b\right)^2\ge0\forall a,b\)

\(A^{2n}\ge0\forall A\)

\(-A^{2n}\le0\forall A\)

19 tháng 3 2017

\(\left|A\right|\ge0\forall A\)

\(-\left|A\right|\le0\forall A\)

\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)

\(\left|A\right|-\left|B\right|\le\left|A-B\right|\)

29 tháng 8 2017

\(C=\dfrac{x^2+8}{x^2-2}\)

\(x^2\ge0\Leftrightarrow\left\{{}\begin{matrix}x^2+8\ge8\\x^2-2\ge-2\end{matrix}\right.\)

\(C\) nhỏ nhất nên: \(x^2-2\) phải lớn nhất

\(x^2+8>0\Leftrightarrow x^2-2< 0\) ( để C nhỏ nhất)

\(\Leftrightarrow x^2-2=-1\Rightarrow x^2=1\)

\(min_C=\dfrac{1+8}{1-2}=-9\) Xảy ra khi
\(x^2=1\Leftrightarrow x=\pm1\)

2)

\(A=x^4+3x^2\)

\(A=x^4+3x^2+\dfrac{9}{4}-\dfrac{9}{4}\)

\(A=\left(x^2+\dfrac{3}{2}\right)^2-\dfrac{9}{4}\)

\(x^2\ge0\Rightarrow x^2+\dfrac{3}{2}\ge\dfrac{3}{2}\Leftrightarrow\left(x^2+\dfrac{3}{2}\right)^2\ge\dfrac{9}{4}\)

\(A=\left(x^2+\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge0\)

Dấu "=" xảy ra khi:

\(x^2=0\Leftrightarrow x=0\)

\(B=\left(x^4+5\right)^2+2\)

\(x^4\ge0\Leftrightarrow x^4+5\ge5\Leftrightarrow\left(x^4+5\right)^2\ge25\)

\(B=\left(x^4+5\right)^2+2\ge27\)

Dấu "=" xảy ra khi:

\(x^4=0\Leftrightarrow x=0\)

29 tháng 8 2017

Nguyễn Thanh Hằng

Bài 2:

\(A=x^4+3x^2\)

Với mọi giá trị của \(x\in R\) ta có:

\(x^4+3x^2\ge0\)

hay \(A\ge0\) với mọi giá trị của \(x\in R\)

Để \(A=0\) thì:

\(\left\{{}\begin{matrix}x^4=0\\x^2=0\end{matrix}\right.\Rightarrow x=0\)

Vậy................