Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm GTLN hoặc GTNN của biểu thức M=3.x2+8
Trả lời:
Ta thấy x2>=0
=> M>=8
lấy đạo hàm M =>M'= 6x=0 tại x=0 (đạt cực trị tại x=0)
=> Biểu thức M có GTNN tại x=0 (lúc đó M=8)
Giả sử với x là số nguyên, GTLN của biểu thức là \(\infty\)
Để có GTNN thì x phải là số 0. Nếu x là số dương thì kết quả dương, còn nếu x là số âm thì kết quả cũng dương.
Khi đó M = 3 * 0^2 + 8 = 8
\(B\left(1-x\right)\left(3x+4\right)\)
\(\rightarrow B=\frac{1}{3}\left(3-3x\right)\left(3x+4\right)\)
\(\rightarrow B\text{⩽ }\frac{1}{3}\left(\frac{3-3x+3x+4}{2}\right)^2\)
\((BTD\)\(AM-GM)\)
\(\rightarrow B\text{⩽ }\frac{1}{3}.\frac{49}{4}\)
\(\rightarrow B\text{⩽ }\frac{49}{12}\)
Dấu '' = '' xảy ra \(\Leftrightarrow3-3x=3x+4\Leftrightarrow-\frac{1}{6}\)
Vậy \(max\)\(B=\frac{49}{12}\Leftrightarrow x=-\frac{1}{6}\)
\(B=\left(1-x\right).\left(3x+4\right)\)
Ta có :
\(B=3x+4-3x^2-4x\)
\(B=-3x^2-x+4\)
\(B=-3\left(x^2+\frac{1}{3}x-\frac{4}{3}\right)\)
\(B=-3\left(x^2+2.\frac{1}{6}.x+\frac{1}{36}-\frac{1}{36}-\frac{4}{3}\right)\)
\(B=-3\left[\left(x+\frac{1}{6}\right)^2-\frac{49}{36}\right]\)
Vì \(\left(x+\frac{1}{6}\right)^2\ge0\)
\(\Rightarrow\left(x+\frac{1}{36}\right)^2-\frac{49}{36}\ge-\frac{49}{36}\)
\(\Rightarrow B\le\frac{49}{12}\)
\(\Rightarrow\)GTLN của B là \(\frac{49}{12}\)Khi \(x=-\frac{1}{6}\)
\(A=\dfrac{\left(x+1\right)^2+2+7}{\left(x+1\right)^2+2}=1+\dfrac{7}{\left(x+1\right)^2+2}< =1+\dfrac{7}{2}=\dfrac{9}{2}\)
Dấu = xảy ra khi x=-1
Vì (x+1)2008 \(\ge\) 0 với mọi x => - (x+1)2008 \(\le\) 0 => 20 - (x+1)2008 \(\le\) 20 + 0 = 20 với mọi x
=> A lớn nhất bằng 20 khi x+ 1= 0 <=> x = -1
b) Vì (x-1)2 \(\ge\) 0 với mọi x => (x-1)2 + 90 \(\ge\) 0 + 90 = 90 với mọi x
=> B nhỏ nhất = 90 khi x -1 = 0 <=> x = 1
Trả lời:
1, A = | x - 3 | + 10
Vì \(\left|x-3\right|\ge0\forall x\)
nên \(\left|x-3\right|+10\ge10\forall x\)
Dấu = xảy ra khi x - 3 = 0 <=> x = 3
Vậy GTNN của A = 10 khi x = 3
B = -7 + ( x + 1 )2
Vì \(\left(x+1\right)^2\ge0\forall x\)
nên \(-7+\left(x+1\right)^2\ge-7\forall x\)
Dấu = xảy ra khi x + 1 = 0 <=> x = -1
Vậy GTNN của B = -7 khi x = -1
2, C = -3 - | x + 2 |
Vì \(\left|x+2\right|\ge0\forall x\)
=> \(-\left|x+2\right|\le0\forall x\)
=> \(-3-\left|x+2\right|\le-3\forall x\)
Dấu = xảy ra khi x + 2 = 0 <=> x = -2
Vậy GTLN của C = -3 khi x = -2
D = 15 - ( x - 2 )2
VÌ \(\left(x-2\right)^2\ge0\forall x\)
=> \(-\left(x-2\right)^2\le0\forall x\)
=> \(15-\left(x-2\right)^2\le15\forall x\)
Dấu = xảy ra khi x - 2 = 0 <=> x = 2
Vậy GTLN của D = 15 khi x = 2
A= |x-3| + 1 >= 0 + 1 = 1
Dấu "=" xảy ra <=> x-3 = 0 <=> x = 3
Vậy GTNN của biểu thức A là A= 1 <=> x = 3