K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 9 2020

d.

\(-1\le sin2x\le1\Rightarrow2\le y\le1+\sqrt{3}\)

\(y_{min}=2\) khi \(sin2x=-1\)

\(y_{max}=1+\sqrt{3}\) khi \(sin2x=1\)

e.

\(0\le sin^2x\le1\Rightarrow\frac{4}{3}\le y\le2\)

\(y_{min}=\frac{4}{3}\) khi \(sin^2x=1\)

\(y_{max}=2\) khi \(sinx=0\)

NV
16 tháng 9 2020

a.

\(0\le cos^2x\le1\Rightarrow2\le y\le1+\sqrt{3}\)

\(y_{min}=2\) khi \(cosx=0\)

\(y_{max}=1+\sqrt{3}\) khi \(cos^2x=1\)

b.

\(-1\le sin\left(2x-\frac{\pi}{4}\right)\le1\Rightarrow-2\le y\le4\)

\(y_{min}=-2\) khi \(sin\left(2x-\frac{\pi}{4}\right)=-1\)

\(y_{max}=4\) khi \(sin\left(2x-\frac{\pi}{4}\right)=1\)

c.

\(0\le cos^23x\le1\Rightarrow1\le y\le3\)

\(y_{min}=1\) khi \(cos^23x=1\)

\(y_{max}=3\) khi \(cos3x=0\)

NV
23 tháng 7 2020

e/

\(y=5sinx+6cosx-7\)

\(=\sqrt{61}\left(\frac{5}{\sqrt{61}}sinx+\frac{6}{\sqrt{61}}cosx\right)-7\)

\(=\sqrt{61}\left(sinx.cosa+cosx.sina\right)-7\) (với \(a\in\left(0;\pi\right)\) sao cho \(cosa=\frac{5}{\sqrt{61}}\))

\(=\sqrt{61}.sin\left(x+a\right)-7\)

Do \(-1\le sin\left(x+a\right)\le1\Rightarrow7-\sqrt{61}\le y\le7+\sqrt{61}\)

\(y_{min}=7-\sqrt{61}\) khi \(sin\left(x+a\right)=-1\)

\(y_{max}=7+\sqrt{61}\) khi \(sin\left(x+a\right)=1\)

f/

\(y=2\left(\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx\right)+3\)

\(=2sin\left(x+\frac{\pi}{3}\right)+3\)

\(\Rightarrow1\le y\le5\)

\(y_{min}=1\) khi \(sin\left(x+\frac{\pi}{3}\right)=-1\)

\(y_{max}=5\) khi \(x+\frac{\pi}{3}=1\)

NV
23 tháng 7 2020

c/

\(y=2\left(1-cos2x\right)+sin2x+cos2x\)

\(=sin2x-cos2x+2=\sqrt{2}sin\left(2x-\frac{\pi}{4}\right)+2\)

Do \(-1\le sin\left(2x-\frac{\pi}{4}\right)\le1\)

\(\Rightarrow2-\sqrt{2}\le y\le2+\sqrt{2}\)

\(y_{min}=2-\sqrt{2}\) khi \(sin\left(2x-\frac{\pi}{4}\right)=-1\)

\(y_{max}=2+\sqrt{2}\) khi \(sin\left(2x+\frac{\pi}{4}\right)=1\)

d/

\(y=\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)\)

\(=1-3sin^2x.cos^2x\)

\(=1-\frac{3}{4}sin^22x\)

\(0\le sin^22x\le1\Rightarrow\frac{1}{4}\le y\le1\)

\(y_{min}=\frac{1}{4}\) khi \(sin^22x=1\)

\(y_{max}=1\) khi \(sin2x=0\)

NV
18 tháng 9 2020

23.

\(tan^2x\ge0\Rightarrow y\le2\)

\(y_{max}=2\) khi \(tanx=0\)

\(y_{min}\) không tồn tại

24.

\(-1\le cosx\le1\Rightarrow0< 1+cosx\le2\)

\(\Rightarrow y\ge\frac{1}{2}\)

\(y_{min}=\frac{1}{2}\) khi \(cosx=1\)

\(y_{max}\) ko tồn tại

NV
18 tháng 9 2020

19.

\(y=\sqrt{5-\frac{1}{2}\left(2sinxcosx\right)^2}=\sqrt{5-\frac{1}{2}sin^22x}\)

\(0\le sin^22x\le1\Rightarrow\frac{3\sqrt{2}}{2}\le y\le\sqrt{5}\)

\(y_{min}=\frac{3\sqrt{2}}{2}\) khi \(sin^22x=1\)

\(y_{max}=\sqrt{5}\) khi \(sin^22x=0\)

21.

\(y=2sin^2x-\left(1-2sin^2x\right)=4sin^2x-1\)

\(0\le sin^2x\le1\Rightarrow-1\le y\le3\)

\(y_{min}=-1\) khi \(sin^2x=0\)

\(y_{max}=3\) khi \(sin^2x=1\)

NV
27 tháng 8 2020

e/

\(\Leftrightarrow\left(sin^2x+4sinx.cosx+3cos^2x\right)-\left(sinx+3cosx\right)=0\)

\(\Leftrightarrow\left(sinx+cosx\right)\left(sinx+3cosx\right)-\left(sinx+3cosx\right)=0\)

\(\Leftrightarrow\left(sinx+3cosx\right)\left(sinx+cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+3cosx=0\\sinx+cosx-1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=-3cosx\\\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=-3\\sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=arctan\left(-3\right)+k\pi\\x=k2\pi\\x=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

NV
27 tháng 8 2020

d/

\(\Leftrightarrow2sinx+2sinx.cos2x-\left(1-sin2x\right)-2cosx=0\)

\(\Leftrightarrow2\left(sinx-cosx\right)+2sinx\left(cos^2x-sin^2x\right)-\left(sinx-cosx\right)^2=0\)

\(\Leftrightarrow2\left(sinx-cosx\right)-2sinx\left(sinx-cosx\right)\left(sinx+cosx\right)-\left(sinx-cosx\right)^2=0\)

\(\Leftrightarrow\left(sinx-cosx\right)\left(2-2sin^2x-2sinx.cosx-sinx+cosx\right)=0\)

\(\Leftrightarrow\left(sinx-cosx\right)\left[2cos^2x-2sinx.cosx-sinx+cosx\right]=0\)

\(\Leftrightarrow\left(sinx-cosx\right)\left[2cosx\left(cosx-sinx\right)+cosx-sinx\right]=0\)

\(\Leftrightarrow-\left(sinx-cosx\right)^2\left(2cosx+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\\2cosx+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\frac{\pi}{4}\right)=0\\cosx=-\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=\pm\frac{2\pi}{3}+k2\pi\end{matrix}\right.\)

NV
30 tháng 9 2019

Đáp án A

Do \(-1\le cosx\le1\Rightarrow\left\{{}\begin{matrix}2+cosx>0\\2-cosx>0\end{matrix}\right.\)

\(\Rightarrow\frac{2+cosx}{2-cosx}>0\) \(\forall x\in R\)

NV
10 tháng 7 2020

a/

\(\Leftrightarrow sin2x\left(1+\sqrt{2}sinx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\1+\sqrt{2}sinx=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin2x=0\\sinx=-\frac{\sqrt{2}}{2}=sin\left(-\frac{\pi}{4}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=k\pi\\x=-\frac{\pi}{4}+k2\pi\\x=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{k\pi}{2}\\x=-\frac{\pi}{4}+k2\pi\\x=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)

b/

\(\Leftrightarrow2sin2x.cos2x-\frac{1}{2}sin4x+\frac{1}{2}sinx=0\)

\(\Leftrightarrow sin4x-\frac{1}{2}sin4x+\frac{1}{2}sinx=0\)

\(\Leftrightarrow sin4x=-sinx=sin\left(-x\right)\)

\(\Rightarrow\left[{}\begin{matrix}4x=-x+k2\pi\\4x=\pi+x+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{k2\pi}{5}\\x=\frac{\pi}{3}+\frac{k2\pi}{3}\end{matrix}\right.\)

NV
10 tháng 7 2020

e/

\(sin\left(\frac{3\pi}{2}-sinx\right)=1\)

\(\Leftrightarrow\frac{3\pi}{2}-sinx=\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow sinx=\pi+k2\pi\)

\(-1\le sinx\le1\Rightarrow-1\le\pi+k2\pi\le1\)

\(\Rightarrow\) Không tồn tại k nguyên thỏa mãn

Pt đã cho vô nghiệm

f/

\(cos^2x-sin^2x+sin4x=0\)

\(\Leftrightarrow cos2x+2sin2x.cos2x=0\)

\(\Leftrightarrow cos2x\left(1+2sin2x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\sin2x=-\frac{1}{2}=sin\left(-\frac{\pi}{6}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}+k\pi\\2x=-\frac{\pi}{6}+k2\pi\\2x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=-\frac{\pi}{12}+k\pi\\x=\frac{7\pi}{12}+k\pi\end{matrix}\right.\)

NV
4 tháng 6 2020

a/ \(y'=4\left(2x-3\right)^3.\left(2x-3\right)'=8\left(2x-3\right)^3\)

b/ \(y'=5cos^43x.\left(cos3x\right)'=-15cos^43x.sin3x\)

c/ \(y'=\frac{\left[cos\left(1-2x^2\right)\right]'}{2\sqrt{cos\left(1-2x^2\right)}}=\frac{-sin\left(1-2x^2\right).\left(1-2x^2\right)'}{2\sqrt{cos\left(1-2x^2\right)}}=\frac{2x.sin\left(1-2x^2\right)}{\sqrt{cos\left(1-2x^2\right)}}\)

d/ \(y'=\frac{\left(\frac{x+1}{x-1}\right)'}{2\sqrt{\frac{x+1}{x-1}}}=\frac{\frac{-2}{\left(x-1\right)^2}}{2\sqrt{\frac{x+1}{x-1}}}=-\frac{1}{\left(x-1\right)^2\sqrt{\frac{x+1}{x-1}}}\)

e/ \(y'=4\left(1+sin^2x\right)^3\left(1+sin^2x\right)'=8.sinx.cosx\left(1+sin^2x\right)^3=4sin2x.\left(1+sin^2x\right)^3\)

1. Tập giá trị của hs: y = sin2x + cos2x là? 2. Giải pt: \(\frac{cosx-2sinx.cosx}{2cos^2x+sinx-1}=\sqrt{3}\) 3. Tìm GTLN và GTNN của hs: \(y=\frac{sinx+2cosx+3}{2+cosx}\) 4. Tập giá trị của: \(y=\sqrt{3}cos\frac{x}{2}-sin\frac{x}{2}\) 5. Giải pt: \(\sqrt{3}\left(sin2x+cos7x\right)=sin7x-cos2x\) 6. Giải pt: \(cos5x.cosx=cos4x.cos2x+3cos^2x+1\) 7. Đồ thị hs: \(y=sin\left(x+\frac{\pi}{4}\right)\) đi qua điểm nào sau đây? ...
Đọc tiếp

1. Tập giá trị của hs: y = sin2x + cos2x là?

2. Giải pt: \(\frac{cosx-2sinx.cosx}{2cos^2x+sinx-1}=\sqrt{3}\)

3. Tìm GTLN và GTNN của hs: \(y=\frac{sinx+2cosx+3}{2+cosx}\)

4. Tập giá trị của: \(y=\sqrt{3}cos\frac{x}{2}-sin\frac{x}{2}\)

5. Giải pt: \(\sqrt{3}\left(sin2x+cos7x\right)=sin7x-cos2x\)

6. Giải pt: \(cos5x.cosx=cos4x.cos2x+3cos^2x+1\)

7. Đồ thị hs: \(y=sin\left(x+\frac{\pi}{4}\right)\) đi qua điểm nào sau đây? \(a.M\left(\frac{\pi}{4};0\right)\) \(b.M\left(\frac{\pi}{2};1\right)\) \(c.M\left(\frac{-\pi}{4};0\right)\) d. M(1;1)

8. Nghiệm của pt: \(2sin^2x-3sinx+1=0\) thỏa đk: \(0\le x\le\frac{\pi}{2}\) là:

9. Cho pt: m(sinx+cosx)+sinx.cosx+1=0. Tìm m để pt có đúng 1 nghiệm thuộc: \(\left[\frac{-\pi}{2};0\right]\)

10. Giải pt: \(\sqrt{3}cos5x-sin5x=2cos3x\)

11. Tập giá trị của hs: y = cos2x + 4sinx - 2 là?

12. Pt: \(2cos^2x+5sinx=4\) có nghiệm âm lớn nhất =?

13. Tổng tất cả các nghiệm của pt: cos5x + cos2x + 2sin3x.sin2x = 0 trên đoạn: \(\left[0;2\pi\right]\) là?

14. Tìm m để pt: cos2x - (2m - 1)cosx - m + 1 = 0 có đúng 2 nghiệm thuộc: \(\left[\frac{-\pi}{2};\frac{\pi}{2}\right]\) là?

15. Đồ thị hs: y = tanx - 2 đi qua? a. O(0;0) b.M\(\left(\frac{\pi}{4};-1\right)\) c. \(N\left(1;\frac{\pi}{4}\right)\) d. \(P\left(\frac{-\pi}{4};1\right)\)

6
NV
21 tháng 9 2020

6.

\(\Leftrightarrow\frac{1}{2}cos6x+\frac{1}{2}cos4x=\frac{1}{2}cos6x+\frac{1}{2}cos2x+\frac{3}{2}+\frac{3}{2}cos2x+1\)

\(\Leftrightarrow cos4x=4cos2x+5\)

\(\Leftrightarrow2cos^22x-1=4cos2x+5\)

\(\Leftrightarrow cos^22x-2cos2x-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-1\\cos2x=3>1\left(ktm\right)\end{matrix}\right.\)

\(\Leftrightarrow...\)

7.

Thay lần lượt 4 đáp án ta thấy chỉ có đáp án C thỏa mãn

8.

\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

\(\Rightarrow x=\left\{\frac{\pi}{6};\frac{\pi}{2}\right\}\)

NV
21 tháng 9 2020

9.

Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}-1\le t\le1\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)

\(\Rightarrow mt+\frac{t^2-1}{2}+1=0\)

\(\Leftrightarrow t^2+2mt+1=0\)

Pt đã cho có đúng 1 nghiệm thuộc \(\left[-1;1\right]\) khi và chỉ khi: \(\left[{}\begin{matrix}m\ge1\\m\le-1\end{matrix}\right.\)

10.

\(\frac{\sqrt{3}}{2}cos5x-\frac{1}{2}sin5x=cos3x\)

\(\Leftrightarrow cos\left(5x-\frac{\pi}{6}\right)=cos3x\)

\(\Leftrightarrow\left[{}\begin{matrix}5x-\frac{\pi}{6}=3x+k2\pi\\5x-\frac{\pi}{6}=-3x+k2\pi\end{matrix}\right.\)

NV
7 tháng 7 2020

a.

\(-1\le sinx\le1\Rightarrow-7\le y\le-3\)

\(y_{min}=-7\) khi \(sinx=-1\)

\(y_{max}=-3\) khi \(sinx=1\)

b.

\(-1\le cos\left(x+\frac{\pi}{3}\right)\le1\Rightarrow1\le y\le5\)

\(y_{min}=1\) khi \(cos\left(x+\frac{\pi}{3}\right)=-1\)

\(y_{max}=5\) khi \(cos\left(x+\frac{\pi}{3}\right)=1\)

c.

\(0\le1-cosx\le2\Rightarrow-5\le y\le3\sqrt{2}-5\)

\(y_{min}=-5\) khi \(cosx=1\)

\(y_{max}=3\sqrt{2}-5\) khi \(cosx=-1\)

d.

ĐKXĐ: \(0\le sinx\Rightarrow0\le sinx\le1\Rightarrow1\le y\le3\)

\(y_{min}=1\) khi \(sinx=0\)

\(y_{max}=3\) khi \(sinx=1\)