\(\dfrac{2x+1}{x-1}\)+5

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2017

\(y=\dfrac{2x+1}{x-1}+5=\dfrac{2x-2+3}{x-1}+5=\dfrac{2x-2}{x-1}+\dfrac{3}{x-1}+5=7+\dfrac{3}{x-1}\)

Để \(max_y\) thì \(\dfrac{3}{x-1}\) nhỏ nhất và \(x-1>0\Leftrightarrow x-1=1\Leftrightarrow x=2\)

Khi đó \(max_y=\dfrac{2.2+1}{2-1}+5=10\)

22 tháng 12 2017

bn có chắc chắn đề như thế này ko

21 tháng 12 2018

ê

21 tháng 12 2018

2x-3y+5z=1 hoặc =-1

TH1: \(\dfrac{x}{y}\)=\(\dfrac{3}{2}\)=>\(\dfrac{x}{3}\)=\(\dfrac{y}{2}\)=>\(\dfrac{x}{15}\)=\(\dfrac{y}{10}\)

\(\dfrac{y}{z}\)=\(\dfrac{5}{7}\)=>\(\dfrac{y}{5}\)=\(\dfrac{z}{7}\)=>\(\dfrac{y}{10}\)=\(\dfrac{z}{14}\)

\(\Rightarrow\)\(\dfrac{x}{15}\)=\(\dfrac{y}{10}\)=\(\dfrac{z}{14}\)=>\(\dfrac{2x}{30}\)=\(\dfrac{3y}{30}\)=\(\dfrac{5z}{70}\)

Áp dụng tính chát dãy tỉ số bằng nhau, ta có:

\(\dfrac{2x-3y+5z}{30-30+70}\)=\(\dfrac{1}{70}\)

=>x=1.15:7=\(\dfrac{3}{14}\)

y=\(\dfrac{1}{7}\)

z=\(\dfrac{1}{5}\)

TH2:............=-1 tự tính nhé làm tương tựvuimình còn phải ôn bài

1 tháng 2 2017

Để \(D=\frac{4}{\left(2x-3\right)^2+5}\) đạt gtln <=> \(\left(2x-3\right)^2+5\) đạt gtnn

Vì \(\left(2x-3\right)^2\ge0\)

\(\Rightarrow\left(2x-3\right)^2+5\ge5\) có gtnn là 5

Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\) => \(x=\frac{3}{2}\)

Vậy gtln của D là \(\frac{4}{5}\) tại \(x=\frac{3}{2}\)

28 tháng 11 2017

a) C = 20013 - |52x|

do \(-\left|5-2x\right|\le0\forall x\)

=> 20013-\(\left|5-2x\right|\le20013\)

=>A≤20013

=> GTLN C =20013 khi 5-2x=0

=> 2x=5

=> x=\(\dfrac{5}{2}\)

vậy GTLN C = 20013 khi x=\(\dfrac{5}{2}\)

b) D = 7 - \(\left|\dfrac{2}{3}+\dfrac{1}{4}x\right|\)

do \(-\left|\dfrac{2}{3}+\dfrac{1}{4}x\right|\le0\forall x\)

=> 7-\(\left|\dfrac{2}{3}+\dfrac{1}{4}x\right|\le7\)

=> D≤7

=> GTLN D =7 khi \(\dfrac{2}{3}+\dfrac{1}{4}x=0\)

=> x=-\(\dfrac{8}{3}\)

2 tháng 9 2017

Ta có : \(\frac{3x-y}{x+y}=\frac{3}{4}\)

\(\Rightarrow4\left(3x-y\right)=3\left(x+y\right)\)

\(\Rightarrow12x-4y=3x+3y\)

\(\Rightarrow12x-3x=3y+4y\)

\(\Leftrightarrow9x=7y\)

\(\Rightarrow\frac{x}{y}=\frac{7}{9}\)

11 tháng 7 2017

a, Với mọi giá trị của x;y ta có:

\(\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2\ge0\)

\(\Rightarrow\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2-10\ge-10\)

Hay \(C\ge-10\)với mọi giá trị của x;y

Để \(C=-10\) thì \(\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2-10=-10\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x+1\right)^2=0\\\left(y-\dfrac{1}{3}\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-1\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy................

b, Với mọi giá trị của x ta có:

\(\left(2x-1\right)^2+3\ge3\Rightarrow\dfrac{5}{\left(2x-1\right)^2+3}\ge\dfrac{5}{3}\)

Hay \(D\ge\dfrac{5}{3}\) với mọi giá trị của x.

Để \(D=\dfrac{5}{3}\) thì \(\dfrac{5}{\left(2x-1\right)^2+3}=\dfrac{5}{3}\)

\(\Rightarrow\left(2x-1\right)^2=0\Rightarrow x=\dfrac{1}{2}\)

Vậy..................

Chúc bạn học tốt!!!

11 tháng 7 2017

\(C=\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2-10\)

\(\left(x+1\right)^2\ge0;\left(y-\dfrac{1}{3}\right)^2\ge0\)

\(C_{MIN}\Rightarrow\left(x+1\right)^2_{MIN};\left(y-\dfrac{1}{3}\right)^2_{MIN}\)

\(\left(x+1\right)^2_{MIN}=0;\left(y-\dfrac{1}{3}\right)^2_{MIN}=0\)

\(\Rightarrow C_{MIN}=0+0-10=-10\)

\(D=\dfrac{5}{\left(2x-1\right)^2+3}\)

\(D_{MAX}\Rightarrow\left(2x-1\right)^2+3_{MIN}\)

\(\left(2x-1\right)^2\ge0\)

\(\left(2x-1\right)^2+3_{MIN}\Rightarrow\left(2x-1\right)^2_{MIN}=0\)

\(\Rightarrow\left(2x-1\right)^2+3_{MIN}=0+3=3\)

\(\Rightarrow D_{MAX}=\dfrac{5}{3}\)

12 tháng 8 2015

Vì x:y:z = 3:4:5 =>\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

=>\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}=\frac{2x^2}{18}=\frac{3y^2}{32}=\frac{3z^2}{75}=\frac{2x^2+2y^2-3x^2}{18+32-75}=\frac{-100}{-25}=4\)

\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}=4\)

=>(x;y;z)=(6;8;10),(-6;-8;-10)

B2

Ta có:

\(\frac{a_1-1}{9}=\frac{a_2-2}{8}=......=\frac{a_9-9}{1}\)=\(\frac{a_1+a_2+......+a_9-45}{45}=\frac{90-45}{45}=1\)

=>\(\frac{a_1-1}{9}=1;\frac{a_2-2}{8}=1;.......\frac{a_9-9}{1}=1\)

=>a1=a2=......=a9=10