Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\left|x-3\right|=t\left(t>0\right)\)
Ta có: \(A=t\left(2-t\right)=-t^2+2t=-\left(t-1\right)^2+1\le1\forall t\)
Dấu "=" xảy ra khi: \(t-1=0\Rightarrow t=1\Rightarrow\left|x-3\right|=1\)
\(\Rightarrow\orbr{\begin{cases}x-3=1\\x-3=-1\end{cases}\Rightarrow}\orbr{\begin{cases}x=4\\x=2\end{cases}}\)
Vậy GTLN của A là 1 khi x = 4 hoặc x = 2
xl mik nhầm phải là \(A=\left|x-3\right|\cdot\left(2-\left|3-x\right|\right)\)
Bài này và bài trước bạn đăng khác gì nhau đâu trời, vì \(\left|x-3\right|=\left|3-x\right|\) nên có thể viết lại \(A=\left|x-3\right|\left(2-\left|x-3\right|\right)\) thoải mái
a/ \(A=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)=\left[\left(x+1\right)\left(x-6\right)\right].\left[\left(x-2\right)\left(x-3\right)\right]\)
\(=\left(x^2-5x-6\right)\left(x^2-5x+6\right)=\left(x^2-5x\right)^2-36\ge-36\)
Suy ra Min A = -36 <=> \(x^2-5x=0\Leftrightarrow x\left(x-5\right)=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=5\end{array}\right.\)
b/ \(B=19-6x-9x^2=-9\left(x-\frac{1}{3}\right)^2+20\le20\)
Suy ra Min B = 20 <=> x = 1/3
a) \(A=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)\)
\(=\left[\left(x+1\right)\left(x-6\right)\right]\left[\left(x-2\right)\left(x-3\right)\right]\)
\(\left(x^2-5x-6\right)\left(x^2-5x+6\right)=\left(x^2-5x\right)^2-36\)
Vì \(\left(x^2-5x\right)^2\ge0\)
=> \(\left(x^2-5x\right)^2-36\ge-36\)
Vậy GTNN của A là -36 khi \(x^2-5x=0\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=5\end{array}\right.\)
b) \(B=19-6x-9x^2=-\left(9x^2+6x+1\right)+20=-\left(3x+1\right)^2+20\)
Vì \(-\left(3x+1\right)^2\le0\)
=> \(-\left(3x+1\right)+20\le20\)
Vậy GTLN của B là 20 khi \(x=-\frac{1}{3}\)
Đặt \(\left|x-3\right|=a\ge0\)
\(\Rightarrow A=a\left(2-a\right)=-a^2+2a=-\left(a-1\right)^2+1\le1\)
\(\Rightarrow A_{max}=1\) khi \(a=1\Leftrightarrow\left|x-3\right|=1\Rightarrow\left[{}\begin{matrix}x-3=1\\x-3=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-2\end{matrix}\right.\)
xin lỗi nhé
mik viết lộn phải là