K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2018

\(F=-x^2-2y^2+2xy-y+1\)

\(-F=x^2+2y^2-2xy+y-1\)

\(-F=\left(x^2-2xy+y^2\right)+\left(y^2+y+\frac{1}{4}\right)-\frac{5}{4}\)

\(-F=\left(x-y\right)^2+\left(y+\frac{1}{2}\right)^2-\frac{5}{4}\)

Mà  \(\left(x-y\right)^2\ge0\forall x;y\)

      \(\left(y+\frac{1}{2}\right)^2\ge0\forall y\)

\(\Rightarrow-F\ge-\frac{5}{4}\)

\(\Leftrightarrow F\le\frac{5}{4}\)

Dấu "=" xảy ra khi : 

\(\hept{\begin{cases}x-y=0\\y+\frac{1}{2}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{2}\\y=-\frac{1}{2}\end{cases}}\)

Vậy \(F_{Max}=\frac{5}{4}\Leftrightarrow x=y=-\frac{1}{2}\)

24 tháng 7 2018

Hihii tks ban nhieu nha <3

13 tháng 9 2021

giúp mik vs gấp lắm:<<

23 tháng 11 2021

Answer:

3.

\(x^2+2y^2+2xy+7x+7y+10=0\)

\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)

\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)

\(\Rightarrow4S^2+28S+4y^2+40=0\)

\(\Rightarrow4S^2+28S+49+4y^2-9=0\)

\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)

\(\Rightarrow-3\le2S+7\le3\)

\(\Rightarrow-10\le2S\le-4\)

\(\Rightarrow-5\le S\le-2\left(2\right)\)

Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)

Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)

Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)

15 tháng 1 2019

Bài 2 :

a) \(P=x^2+y^2+xy+x+y\)

\(2P=2x^2+2y^2+2xy+2x+2y\)

\(2P=x^2+2xy+y^2+x^2+2x+1+y^2+2y+1-2\)

\(2P=\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2-2\)

\(P=\frac{\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2-2}{2}\)

\(P=\frac{\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2}{2}-1\le-1\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+1=0\\y+1=0\end{cases}}\)

Mình nghĩ đề phải là tìm GTLN của \(P=x^2+y^2+xy+x-y\)hoặc đổi dấu x và y thì dấu "=" mới xảy ra đc

17 tháng 1 2019

@ Phương ơi ! Cái dòng \(P=\)cuối ấy . Chỗ đấy là \(\ge-1\)em nhé!

\(\frac{x^2+y^2-1+2xy}{x^2-y^2+1+2x}\)

\(=\frac{\left(x+y\right)^2-1}{\left(x-1\right)^2-y^2}\)

\(=\frac{\left(x+y-1\right)\left(x+y+1\right)}{\left(x-1-y\right)\left(x-1+y\right)}\)

\(=\frac{x+y+1}{x-y-1}\)

Gọi giá trị trên là : A

Ta có : \(A=x^2+x+2\)

\(=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{7}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{7}{2}\ge\frac{7}{2}\)

MAX \(A=\frac{7}{2}\Leftrightarrow x+\frac{1}{2}=0\Rightarrow x=\frac{-1}{2}\)

14 tháng 10 2018

Câu 1 :

\(E=4x^2+y^2-4x-2y+3\)

\(E=\left(2x\right)^2-2\cdot2x\cdot1+1^2+y^2-2\cdot y\cdot1+1^2+1\)

\(E=\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=1\end{cases}}\)

Câu 2 :

\(G=x^2+2y^2+2xy-2y\)

\(G=x^2+2xy+y^2+y^2-2.y\cdot1+1^2-1\)

\(G=\left(x+y\right)^2+\left(y-1\right)^2-1\ge-1\forall x;y\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+1=0\\y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-1\\y=1\end{cases}}}\)

14 tháng 10 2018

Còn câu F bạn ơi. Giúp Gk vs