K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 4 2019

\(C=-\left(x^2-2x+1\right)-\left(4y^2+6y+\frac{9}{4}\right)-\left(z^2-10z+25\right)+\frac{8189}{4}\)

\(C=-\left(x-1\right)^2-\left(2y+\frac{3}{2}\right)^2-\left(z-5\right)^2+\frac{8189}{4}\le\frac{8189}{4}\)

\(\Rightarrow B_{max}=\frac{8189}{4}\) khi \(\left\{{}\begin{matrix}x=1\\y=-\frac{3}{4}\\z=5\end{matrix}\right.\)

6 tháng 4 2019

Anh làm cả phần nhỏ nhất được không anh

16 tháng 4 2019

a) Đặt \(A=x^2-2x+5\)

                \(=\left(x-1\right)^2+4\)

Ta thấy \(\left(x-1\right)^2\ge0\forall x\)

  \(\Rightarrow\left(x-1\right)^2+4\ge0+4\forall x\)

 hay \(A\ge4\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-1=0\)

                         \(\Leftrightarrow x=1\)

Vậy Min A=4 \(\Leftrightarrow x=1\)

16 tháng 4 2019

a , \(x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\ge4\)

Dấu " = " xảy ra khi x - 1 = 0 hay x = 1

Vậy GTNN là 4 khi x = 1 .

b , \(9-4x-x^2=-\left(x^2+4x-9\right)=-\left(x^2+4x+4-13\right)=-\left(x+2\right)^2+13=13-\left(x+2\right)^2\le13\)

Dấu " = " xảy ra khi x + 2 = 0 hay x = -2 .

Vậy GTLN là 13 khi x = -2 .

c , mik ko bt làm

31 tháng 10 2016

lát nữa mình làm b,c sau

31 tháng 10 2016

A=4x2+4x+11=(4x2+4x+1)+10=(2x+1)2+10

vì (2x+1)2 \(\ge\)0

\(\Rightarrow\)A=(2x+1)2+10\(\ge\)10 

dấu ''='' xảy ra \(\Leftrightarrow\)x=\(-\frac{1}{2}\) 

1 tháng 2 2016

kết bạn nha

1 tháng 2 2016

khó

duyệt đi

31 tháng 3 2018

A = x4 + 2x2y2 + y4 - 7

   = (x2 + y2) - 7

Thay x2 + y2 = 2, ta được

2 - 7 = -5

22 tháng 10 2017

M=4(x+y)+21xy(x+y)+7x2y2(x+y)+2014

M=4.0+21xy.0+7x2y2.0+2014

M=0+0+0+2014=2014

nhớ

ko cho ko đâu

1 tháng 8 2016

a) -( x-y)2 - (x-1)2 -2 

GTLN = -2

20 tháng 7 2019

Câu a sai đề nên mik sửa lại nha

a) \(A=2019-\left(3x+8\right)^2\)

Ta có : \(\left(3x+8\right)^2\ge0=>2019-\left(3x+8\right)^2\le2019\)

Dấu '=' xảy ra khi và chỉ khi \(3x+8=0=>x=-\frac{8}{3}\)

Vậy \(A_{max}=2019\)khi \(x=-\frac{8}{3}\)

b) ta có : \(\left(x+2\right)^2\ge0 vs \left(2x-y\right)^2\ge0=>12-\left(x+2\right)^2+\left(2x-y\right)^2\le12\)

Dấu '=' xảy ra khi \(x+2=2x-y=0=>x=-2 , y=-4\)

Vậy ... 

b) \(\left(6x-1\right)^2\ge0=>\left(6x-1\right)^2+2018\ge2018\)

Dấu "=" xảy ra khi \(6x-1=0=>x=\frac{1}{6}\)

Vậy ...

\(\left|2x+1\right|\ge0=>15+\left|2x+1\right|\ge15\)

Dấu "=" xảy ra  khi \(2x+1=15=>x=7\)

Vậy ...

\(a,A=2019-\left(3x+8\right)\)

GTLN của biểu thức là 2019 khi \(3x+8=0\Rightarrow x=-\frac{8}{3}\)

\(b,B=12-\left(x+2\right)^2+\left(2x-y\right)^2\)

GTLN của biểu thức là 12 khi \(\orbr{\begin{cases}x+2=0\\2x-y=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\2.\left(-2\right)-y=0\end{cases}\Rightarrow}x=-2;y=-4}\)

\(a,A=\left(6x-1\right)^2+2018\ge2018\)

Dấu bằng xảy ra khi \(6x-1=0\Rightarrow x=\frac{1}{6}\)

Vậy GTNN của A là 2018 khi x = 1/6

B ko hiểu