Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, |x| - x = \(\frac{3}{4}\)
nếu x > hoặc = 0
suy ra |x| = x
|x| - x = 0
vậy x < 0
suy ra
|x| - ( -x ) = \(-\frac{3}{4}\)
|x| + x = \(-\frac{3}{4}\)
2 . x = \(-\frac{3}{4}\)
x = \(-\frac{3}{8}\)
nói rõ lại đề b hộ tôi vs
2 .
tìm giá trị nhỏ nhất;
a, A= |x + 1| +5
b, B =(x - 1)2 +|y - 3| +2
HELP ME !!! AI LÀM NHANH TUI TICK CHO
A, A=!x+1!+5
=>A=5 khi x=-1
B, B=\(\left(x-1\right)^2+!y-3!+2\)
B=2 khi x=1 và y=3
giá trị tuyệt đối x+10 lớn hơn hoăc bằng 0
=> giá trị tuyệt đối x+10 cộng với 2005
sẽ lớn hơn hoăc bằng 2005 => A lớn hơn hoăc bằng 2005
Dấu bằng xảy ra <=> giá trị tuyệt đối x+10 bằng 0
=> x=-10
Vậy Min B = 2005 <=> x=-10
a) \(P=\left|x-2016\right|+\left|x-2017\right|+\left|x-2018\right|\)
*TH1: \(x< 2016\):
\(P=2016-x+2017-x+2018-x=6051-3x>6051-3\cdot2016=3\)
*TH2: \(2016\le x< 2017\):
\(P=x-2016+2017-x+2018-x=2019-x>2019-2017=2\)
*TH3: \(2017\le x< 2018\):
\(P=x-2016+x-2017+2018-x=x-2015\ge2017-2015=2\)(Dấu "=" xảy ra khi x = 2017)
*TH4: \(x\ge2018\):
\(P=x-2016+x-2017+x-2018=3x-6051\ge3\cdot2018-6051=3\)(Dấu "=" xảy ra khi x = 2018)
Vậy GTNN của P là 2 khi x = 2017.
b) \(x-2xy+y-3=0\)
\(\Leftrightarrow x\left(1-2y\right)+y-\frac{1}{2}-\frac{5}{2}=0\)
\(\Leftrightarrow2x\left(\frac{1}{2}-y\right)-\left(\frac{1}{2}-y\right)=\frac{5}{2}\)
\(\Leftrightarrow\left(2x-1\right)\left(\frac{1}{2}-y\right)=\frac{5}{2}\)
\(\Leftrightarrow\left(2x-1\right)\left(1-2y\right)=5\)
2x-1 | 5 | -5 | 1 | -1 |
1-2y | 1 | -1 | 5 | -5 |
x | 3 | -2 | 1 | 0 |
y | 0 | 1 | -2 | 3 |
Ta có : |x| và |8 - x| \(\ge0\forall x\in R\)
=> |x| + |8 - x| \(\ge0\forall x\in R\)
Mà x ko thể nhận đồng thwoif hai giá trị
Nên GTNN của biểu thức là : 8 khi x = 8 hoặc x = 0
CTV gì mà vô dụng v~, chuyên làm linh tinh lấy lượt chăm chỉ mà chất lượng thì méo có
a)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(A=\left|x\right|+\left|8-x\right|\ge\left|x+8-x\right|=8\)
Đẳng thức xảy ra khi \(0\le x\le8\)
b)Tiếp tục áp dụng BĐT trên
\(B=\left|x-500\right|+\left|x-300\right|\)
\(=\left|x-500\right|+\left|300-x\right|\)
\(\ge\left|x-500+300-x\right|=200\)
Đẳng thức xảy ra khi \(300\le x\le500\)