Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ \(A=3\left|2x-1\right|-5\)
Ta có: \(\left|2x-1\right|\ge0\)
\(\Rightarrow3\left|2x-1\right|\ge0\)
\(\Rightarrow3\left|2x-1\right|-5\ge-5\)
Để A nhỏ nhất thì \(3\left|2x-1\right|-5\)nhỏ nhất
Vậy \(Min_A=-5\)
\(A=3\left|1-2x\right|-5\)
Ta có : \(\left|1-2x\right|\ge0\)
\(\Rightarrow3\left|1-2x\right|\ge0\)
\(\Rightarrow3\left|1-2x\right|-5\ge-5\)
\(\Rightarrow A\ge-5\)
Dấu " = " xảy ra khi và chỉ khi \(1-2x=0\Rightarrow2x=1\Rightarrow x=\frac{1}{2}\)
Vậy \(Min_A=-5\Leftrightarrow x=\frac{1}{2}.\)
- Vì \(\left|x-\frac{1}{2}\right|\ge0\)
=>\(A=\frac{3}{8}+\left|x-\frac{1}{2}\right|\ge\frac{3}{8}\)
A đạt giá trị nhỏ nhất <=> \(A=\frac{3}{8}+\left|x-\frac{1}{2}\right|=\frac{3}{8}\)
=>\(\left|x-\frac{1}{2}\right|=0\)
=>\(x-\frac{1}{2}=0\)
=>x=\(\frac{1}{2}\)
Vậy A đạt giá trị nhỏ nhất là \(\frac{3}{8}\) khi x=\(\frac{1}{2}\)
- Vì \(\left|2x+4\right|\ge0\)
=>\(B=\frac{6}{5}-\left|2x+4\right|\le\frac{6}{5}\)
B đạt giá trị lớn nhất <=> \(B=\frac{6}{5}-\left|2x+4\right|=\frac{6}{5}\)
<=>|2x+4|=0
<=>2x+4=0
<=>2x=-4
<=>x=-2
Vậy B đạt giá trị lớn nhất là \(\frac{6}{5}\) khi x=-2
Vì \(\left|2x-6\right|\ge0\forall x;\left|2x-6\right|-4\ge-4\)
\(\Rightarrow\frac{1}{\left|2x-6\right|-4}\le\frac{1}{-4}\Rightarrow\frac{2019}{\left|2x-6\right|-4}\ge\frac{2019}{-4}\Rightarrow A\ge\frac{2019}{-4}\)
Dấu ''='' xảy ra <=> x = 3
Vậy GTNN A là -2019/4 <=> x = 3
VÌ \(\left|1-2x\right|\ge0\Rightarrow3.\left|1-2x\right|\ge0\)NÊN GTNN CỦA \(a\)=-5\(\Leftrightarrow1-2x=0\Rightarrow x=\frac{1}{2}\)
A=3.|1-2x|-5
Vì 3.|1-2x|\(\ge\)0
Suy ra:3.|1-2x|-5\(\ge\)-5
Dấu = xảy ra khi 1-2x=0
2x=1
x=1/2
Vậy MIn A=-5 khi x=1/2