\(M=2x+\sqrt{5-x^2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2017

\(M=2x+\sqrt{5-x^2}\)

\(\Leftrightarrow M-2x=\sqrt{5-x^2}\)

\(\Leftrightarrow M^2-4Mx+4x^2=5-x^2\)

\(\Leftrightarrow5x^2-4Mx+M^2-5=0\)

Để PT theo nghiệm x có nghiệm thì

\(\Delta'=4M^2-5.\left(M^2-5\right)\ge0\)

\(\Leftrightarrow M^2\le25\)

\(\Leftrightarrow-5\le M\le5\)

24 tháng 10 2017

Max đúng

Min sai rồi

DK \(x\ge-\sqrt{5}\)

=> M \(\ge-2\sqrt{5}\)

21 tháng 8 2020

a) \(A=\sqrt{4x^2+4x+2}=\sqrt{4x^2+4x+1+1}=\sqrt{\left(2x+1\right)^2+1}\)

Vì \(\left(2x+1\right)^2\ge0\forall x\)\(\Rightarrow\left(2x+1\right)^2+1\ge1\forall x\)

\(\Rightarrow A\ge\sqrt{1}=1\)

Dấu " = " xảy ra \(\Leftrightarrow2x+1=0\)\(\Leftrightarrow2x=-1\)\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy \(minA=1\Leftrightarrow x=\frac{-1}{2}\)

b) \(B=\sqrt{2x^2-4x+5+1}=\sqrt{2x^2-4x+2+3+1}=\sqrt{2\left(x^2-2x+1\right)+4}\)

\(=\sqrt{2\left(x-1\right)^2+4}\)

Vì \(\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2\ge0\forall x\)\(\Rightarrow2\left(x-1\right)^2+4\ge4\forall x\)

\(\Rightarrow B\ge\sqrt{4}=2\)

Dấu " = " xảy ra \(\Leftrightarrow x-1=0\)\(\Leftrightarrow x=1\)

Vậy \(minB=2\Leftrightarrow x=1\)

21 tháng 8 2020

Mơn bạn nha

7 tháng 10 2015

\(\sqrt{\left(x^2+2x+1\right)+4}=\sqrt{\left(x+1\right)^2+4}\supseteq\sqrt{4}=2\)

=> min M=2 => x=-1

15 tháng 9 2018

a) ta có : \(\sqrt{2x^2-2x+5}=\sqrt{2\left(x^2-x+\dfrac{5}{2}\right)}=\sqrt{2\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{9}{2}}\)

\(=\sqrt{2\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{2}}\ge\sqrt{\dfrac{9}{2}}\)

\(\Rightarrow GTNN\) của biểu thức trên là \(\sqrt{\dfrac{9}{2}}=\dfrac{3}{\sqrt{2}}\) khi \(x=\dfrac{1}{2}\)

b) ta có : \(1-\sqrt{-x^2+2x+5}=1-\sqrt{-x^2+2x-1+6}\)

\(=1-\sqrt{-\left(x-1\right)^2+6}\le1-\sqrt{6}\)

\(\Rightarrow GTLN\) của biểu thức trên là \(1-\sqrt{6}\) khi \(x=1\)

d) ta có : \(\dfrac{1}{2x-\sqrt{x}+3}=\dfrac{1}{2\left(x-\dfrac{\sqrt{x}}{2}+\dfrac{1}{16}\right)+\dfrac{23}{8}}\)

\(=\dfrac{1}{2\left(\sqrt{x}-\dfrac{1}{4}\right)^2+\dfrac{23}{8}}\le\dfrac{1}{\dfrac{23}{8}}=\dfrac{8}{23}\)

\(\Rightarrow GTLN\) của biểu thức trên là \(\dfrac{8}{23}\) khi \(x=\dfrac{1}{16}\)

1 tháng 3 2020

chọn điểm rơi hay sao á

1 tháng 3 2020

bạn giải được ko?

4 tháng 9 2019

1.

\(A=\sqrt{3+\sqrt{\left(\sqrt{12}+1\right)^2}}=\sqrt{4+\sqrt{12}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)

2.

\(y=\sqrt{16-x^2}\le4\)

Dau '=' xay ra khi \(x=\sqrt{12}\)

3.

\(y=2+\sqrt{2\left(x-1\right)^2+3}\ge2+\sqrt{3}\)

Dau '=' xay ra khi \(x=1\)

8 tháng 11 2021

\(M=\sqrt{x^2-2x+11}\)

\(=\sqrt{x^2-2x+1+10}\)

\(=\sqrt{\left(x-1\right)^2+10}\)

Nhận thấy (x - 1)2 \(\ge0\)

=> (x - 1)2 + 10 \(\ge10\)

=> \(\sqrt{\left(x-1\right)^2+10}\ge\sqrt{10}\)

=> Min M = \(\sqrt{10}\)

Dấu "=" xảy ra <=> x - 1 = 0

<=> x = 1

Vậy Min M = \(\sqrt{10}\)khi x = 1

8 tháng 11 2021

M nhỏ nhất khi \(x^2-2x+11\)nhỏ nhất.

Mà \(x^2-2x+11=\left(x^2-2x+1\right)+10=\left(x-1\right)^2+10\)

Lại có \(\left(x-1\right)^2\ge0\Leftrightarrow\left(x-1\right)^2+10\ge10\Leftrightarrow x^2-2x+11\ge10\)(đẳng thức xảy ra khi x = 1)

Do đó \(min_{x^2-2x+11}=10\Leftrightarrow x=1\)

Khi đó \(M=\sqrt{x^2-2x+11}=\sqrt{10}\)

Vậy GTNN của M là 10 khi x = 1.