K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 11 2016

Áp dụng BĐT Bunhiacopxki : \(A^2=\left(\sqrt{2}.\sqrt{2}x+\sqrt{3}.\sqrt{3}y\right)^2\le\left(2+3\right)\left(2x^2+3y^2\right)\)

\(\Leftrightarrow A^2\le25\Leftrightarrow\left|A\right|\le5\Leftrightarrow-5\le A\le5\)

Vậy minA = -5 khi \(\hept{\begin{cases}2x+3y=-5\\2x^2+3y^2=5\end{cases}\Leftrightarrow}x=y=-1\)

maxA = 5 khi \(\hept{\begin{cases}2x+3y=5\\2x^2+3y^2=5\end{cases}\Leftrightarrow}x=y=1\)

28 tháng 4 2017

cộng 1 và trừ 1 nhé và đây là toán 8 thôi 

9 tháng 3 2019

Đây là toán 9 mà?

\(A=\frac{2x+1}{x^2+2}\Leftrightarrow Ax^2-2x+\left(2A-1\right)=0\) (1)

+)A = 0 thì \(x=-\frac{1}{2}\)

+)A khác 0 thì (1) là pt bậc 2.(1) có nghiệm tức là \(\Delta'=1-A\left(2A-1\right)\ge0\)

\(\Leftrightarrow-2A^2+A+1\ge0\Leftrightarrow-\frac{1}{2}\le A\le1\)

Thay vào giải x

7 tháng 12 2016

MinA=-7 khi x=y=2 và z=1

từ đây phân tích ra

7 tháng 12 2016

lm rõ ra giùm cái

15 tháng 6 2015

\(P=\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+xy-x-y+1+2012=\left(x-1\right)^2+\left(y-1\right)^2-\left(x-1\right)\left(y-1\right)+2012\)

\(P=\left(\left(x-1\right)^2-\left(x-1\right)\left(y-1\right)+\frac{\left(y-1\right)^2}{4}\right)+\frac{3\left(y-1\right)^2}{4}+2012=\left(x-1-\frac{y-1}{2}\right)^2+\frac{3\left(y-1\right)^2}{4}+2012\ge2012\)

=> Min P=2012 <=> \(\frac{2x-2-y+1}{2}=0\Leftrightarrow2x-y-1=0\) và \(\frac{3\left(y-1\right)^2}{4}=0\Leftrightarrow y=1\)=> \(2x-1-1=0\Leftrightarrow x=1\)

 

28 tháng 6 2015

Để 2x^2 + 5 / 2x^2 +1 có GTLN thì 2x^2 +1 phải có GTNN . => Ta có : x^2 > 0 => x = 0 => 2x^2 = 0 ( để có GTNN) => 2x^2 + 1 = 1

=> Vậy , GNLN của 2x^2 + 5 / 2x^2 +1 là 5