K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2019

\(A=4x\left(x+y-2\right)^2+\left|2y-3\right|+1,5\)

Ta có:

  \(4x\left(x+y-2\right)^2\ge0\)

\(\left|2y-3\right|\ge0\)

\(\Leftrightarrow4x\left(x+y-2\right)^2+\left|2y-3\right|\ge0\)

\(\Leftrightarrow4x\left(x+y-2\right)^2+\left|2y-3\right|+1,5\ge1,5\)

Dấu = xảy ra khi : \(x+y-2=0\Leftrightarrow x+y=2\)

                              \(2y-3=0\Leftrightarrow y=\frac{3}{2}\Leftrightarrow x=\frac{1}{2}\)

Vậy .....................

Bài 1: Thu gọn a) \(\frac{1}{5}x^4y^3-3x^4y^3\) b) \(5x^2y^5-\frac{1}{4}x^2y^5\) c) \(\frac{1}{7}x^2y^3.\left(-\frac{14}{3}xy^2\right)-\frac{1}{2}xy.\left(x^2y^{\text{4}}\right)\) d) \(\left(3xy\right)^2.\left(-\frac{1}{2}x^3y^2\right)\) e) \(-\frac{1}{4}xy^2+\frac{2}{5}x^2y+\frac{1}{2}xy^2-x^2y\) f) \(\frac{1}{2}x^4y.\left(-\frac{2}{3}x^3y^2\right)-\frac{1}{3}x^7y^3\) g) \(\frac{1}{2}x^2y.\left(-10x^3yz^2\right).\frac{1}{4}x^5y^3z\) h)...
Đọc tiếp

Bài 1: Thu gọn

a) \(\frac{1}{5}x^4y^3-3x^4y^3\)

b) \(5x^2y^5-\frac{1}{4}x^2y^5\)

c) \(\frac{1}{7}x^2y^3.\left(-\frac{14}{3}xy^2\right)-\frac{1}{2}xy.\left(x^2y^{\text{4}}\right)\)

d) \(\left(3xy\right)^2.\left(-\frac{1}{2}x^3y^2\right)\)

e) \(-\frac{1}{4}xy^2+\frac{2}{5}x^2y+\frac{1}{2}xy^2-x^2y\)

f) \(\frac{1}{2}x^4y.\left(-\frac{2}{3}x^3y^2\right)-\frac{1}{3}x^7y^3\)

g) \(\frac{1}{2}x^2y.\left(-10x^3yz^2\right).\frac{1}{4}x^5y^3z\)

h) \(4.\left(-\frac{1}{2}x\right)^2-\frac{3}{2}x.\left(-x\right)+\frac{1}{3}x^2\)

i) \(1\frac{2}{3}x^3y.\left(\frac{-1}{2}xy^2\right)^2-\frac{5}{4}.\frac{8}{15}x^3y.\left(-\frac{1}{2}xy^2\right)^2\)

k) \(-\frac{3}{2}xy^2.\left(\frac{3}{4}x^2y\right)^2-\frac{3}{5}xy.\left(-\frac{1}{3}x^4y^3\right)+\left(-x^2y\right)^2.\left(xy\right)^2\)

n) \(-2\frac{1}{5}xy.\left(-5x\right)^2+\frac{3}{4}y.\frac{2}{3}\left(-x^3\right)-\frac{1}{9}.\left(-x\right)^3.\frac{1}{3}y\)

m) \(\left(-\frac{1}{3}xy^2\right)^2.\left(3x^2y\right)^3.\left(-\frac{5}{2}xy^2z^3\right)^{^2}\)

p) \(-2y.\left|2\right|x^4y^5.\left|-\frac{3}{4}\right|x^3y^2z\)

1
26 tháng 7 2019

Bài 1:

a) \(\frac{1}{5}x^4y^3-3x^4y^3\)

= \(\left(\frac{1}{5}-3\right)x^4y^3\)

= \(-\frac{14}{5}x^4y^3.\)

b) \(5x^2y^5-\frac{1}{4}x^2y^5\)

= \(\left(5-\frac{1}{4}\right)x^2y^5\)

= \(\frac{19}{4}x^2y^5.\)

Mình chỉ làm 2 câu thôi nhé, bạn đăng nhiều quá.

Chúc bạn học tốt!

29 tháng 7 2019

cảm ơn nha

chúc bạn học tốt

22 tháng 10 2019

1.

a) \(x\in\left\{4;5;6;7;8;9;10;11;12;13\right\}\)

b) x=0

d) \(x=\frac{-1}{35}\) hoặc \(x=\frac{-13}{35}\)

e) \(x=\frac{2}{3}\)

17 tháng 10 2019

1. a) Ta có: M  = |x + 15/19| \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x + 15/19 = 0 <=> x = -15/19

Vậy MinM = 0 <=> x = -15/19

b) Ta có: N = |x  - 4/7| - 1/2 \(\ge\)-1/2 \(\forall\)x

Dấu "=" xảy ra <=> x - 4/7 = 0 <=> x = 4/7

Vậy MinN = -1/2 <=> x = 4/7

17 tháng 10 2019

2a) Ta có: P = -|5/3 - x|  \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> 5/3 - x = 0 <=> x = 5/3

Vậy MaxP = 0 <=> x = 5/3

b) Ta có: Q = 9 - |x - 1/10| \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x - 1/10 = 0 <=> x = 1/10

Vậy MaxQ = 9 <=> x = 1/10

24 tháng 6 2017

\(\left|x+\dfrac{1}{2}\right|+\left|x+\dfrac{1}{3}\right|+\left|x+\dfrac{1}{4}\right|\)

\(=\left|x+\dfrac{1}{2}\right|+\left|-x-\dfrac{1}{4}\right|+\left|x+\dfrac{1}{3}\right|\)

\(\ge\left|x+\dfrac{1}{2}-x-\dfrac{1}{4}\right|+0=\dfrac{1}{4}\)

Dấu = xảy ra khi \(x=-\dfrac{1}{3}\)   

20 tháng 10 2017

\(A=\left|x+\frac{1}{2}\right|-1\)

ta có \(\left|x+\frac{1}{2}\right|\ge0\forall x\in R\)

\(\Rightarrow\left|x+\frac{1}{2}\right|-1\ge-1\forall x\in R\)

\(\Rightarrow A\ge-1\)

\(A=-1\Leftrightarrow x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}\)

Vậy GTNN của A=-1 tại x=-1/2

20 tháng 10 2017

a) GTTNN là -1 

b) GTLN là -3

c) GTNN là -8

d) đang tìm .... 

6 tháng 7 2016

|x+1/2|> hoặc bằng 0(1)

|x+1/3|> hoặc bằng 0(2)

|x+1/4|> hoặc bằng 0(3)

Từ (1),(2)và (3) ta có:|x+1/2|+|x+1/3|+|x+1/4|> hoặc bằng 0 

Nên GTNN của B bằng 0 

khi x \(\in\)-1/2;-1/3;-1/4