\(x^2+3x+7\)

a2)B=(x-2)(x-5)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2016

a) A=x2+2.x.3/2+9/4++19/4=(x+3/2)2+19/4

A\(\ge\)19/4

=> GTNN của A là 19/4 khi x=-3/2

b)B=(x2-7x+10)(x2-7x-10)=(x2-7x)2-100

=> GTNN của B=-100 khi x= hoặc x=7

2 tháng 9 2018

\(A=x^2-3x+5\)

\(=x^2-3x+\frac{9}{4}+\frac{11}{4}\)

\(=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\)

\(\left(x-\frac{3}{2}\right)^2\ge0\Rightarrow A\ge\frac{11}{4}\)

Dấu "=" xảy ra khi \(x-\frac{3}{2}=0\Rightarrow x=\frac{3}{2}\)

Vậy Min A = \(\frac{11}{4}\Leftrightarrow x=\frac{3}{2}\)

2 tháng 9 2018

a) \(A=x^2-3x+5\)

\("="\Leftrightarrow x=\frac{11}{4}\Rightarrow x=\frac{3}{2};\frac{11}{4}\)

b) \(B=\left(2x-1\right)^2+\left(x+2\right)^2\)

\("="\Leftrightarrow x=5\Rightarrow x=0;5\)

c) \(C=4x-x^2+3\)

\("="\Leftrightarrow x=7\Rightarrow x=2;7\)

d) \(D=x^4+x^2+2\)

\("="\Leftrightarrow x=2\Rightarrow x=0;2\)

29 tháng 8 2018

\(A=x^2-4x-x\left(x-4\right)-15\)

\(=x^2-4x-x^2+4x-15=-15\)   =>  đpcm

\(B=5x\left(x^2-x\right)-x^2\left(5x-5\right)-13\)

\(=5x^3-5x^2-5x^3+5x^2-13=-13\)   =>   đpcm

\(C=-3x\left(x-5\right)+3\left(x^2-4x\right)-3x+7\)

\(=-3x^2+15x+3x^2-12x-3x+7=7\)   =>   đpcm

29 tháng 8 2018

\(D=7\left(x^2-5x+3\right)-x\left(7x-35\right)-14\)

\(=7x^2-35x+21-7x^2+35x-14=7\)  =>   đpcm

\(E=4x\left(x^2-7+2\right)-4\left(x^3-7x+2x-5\right)\)

\(=4x^3-20x-4x^3+20x+20=20\)    =>    đpcm

\(H=x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)-10+3x\)

\(=5x^2-3x-x^3+x^2+x^3-6x^2-10x+3x=-10\) =>   đpcm

a)

\(A=x^2-3x+5=x^2-3x+\left(1,5\right)^2+2,75\\ A=\left(x-1,5\right)^2+2,75\ge2,75\)

đẳng thức xảy ra khi x-1,5=0 => x=1,5

vậy GTNN của A là 3,75 tại x=1,5

b)

\(B=\left(2x-1\right)^2+\left(x+2\right)^2\\ B=4x^2-4x+1+x^2+4x+4\\ B=5x^2+5\ge5\)

đẳng thức xảy ra khi x=0

vậy GTNN của B là 5 tại x=0

c)

\(C=\left(x+3\right)\left(x-11\right)+2003\\ C=x^2-8x-33+2003\\ C=x^2-2.4x+16+1954\\ C=\left(x-4\right)^2+1954\ge1954\)

đẳng thức xảy ra khi x-4=0 => x=4

d)

\(D=\left(x-2\right)\left(x-5\right)\left(x^2-7x-10\right)\\ D=\left(x^2-7x+10\right)\left(x^2-7x-10\right)\\ D=\left(x^2-7x\right)^2-100\ge-100\)

đẳng thức xảy ra khi:

\(x^2-7x=0\Rightarrow x\left(x-7\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=7\end{matrix}\right.\)

vậy GTNN của D là -100 tại x=0 hoặc x=7

29 tháng 8 2017

a) \(A=x^2-3x+5=x^2-3x+\dfrac{9}{4}+\dfrac{11}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\)

ta có : \(\left(x-\dfrac{3}{2}\right)^2\ge0\) với mọi \(x\) \(\Rightarrow\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\) với mọi \(x\)

\(\Rightarrow\) GTNN của \(A\)\(\dfrac{11}{4}\) khi \(\left(x-\dfrac{3}{2}\right)^2=0\Leftrightarrow x-\dfrac{3}{2}=0\Leftrightarrow x=\dfrac{3}{2}\)

vậy GTNN của A là \(\dfrac{11}{4}\) khi \(x=\dfrac{3}{2}\)

b) \(B=\left(2x-1\right)^2+\left(x+2\right)^2=4x^2-4x+1+x^2+4x+4\)

\(=5x^2+5\)

ta có : \(x^2\ge0\) với mọi \(x\) \(\Rightarrow5x^2+5\ge5\) với mọi \(x\)

\(\Rightarrow\) GTNN của B là 5 khi \(5x^2=0\Leftrightarrow x=0\)

vậy GTNN của B là 5 khi \(x=0\)

c) \(C=\left(x+3\right)\left(x-11\right)+2003=x^2-11x+3x-33+2003\)

\(=x^2-8x+16+1954=\left(x-4\right)^2+1954\)

ta có : \(\left(x-4\right)^2\ge0\) với mọi \(x\) \(\Rightarrow\left(x-4\right)^2+1954\ge1954\) với mọi \(x\)

\(\Rightarrow\) GTNN của C là 1954 khi \(\left(x-4\right)^2=0\Leftrightarrow x-4=0\Leftrightarrow x=4\)

vậy GTNN của C là 1954 khi \(x=4\)

d) câu này đề sai thì phải

16 tháng 3 2020

câu 1

a)\(ĐKXĐ:x^3-8\ne0=>x\ne2\)

b)\(\frac{3x^2+6x+12}{x^3-8}=\frac{3\left(x^2-2x+4\right)}{\left(x-2\right)\left(x^2-2x+4\right)}=\frac{3}{x-2}\left(#\right)\)

Thay \(x=\frac{4001}{2000}\)zô \(\left(#\right)\)ta được

\(\frac{3}{\frac{4001}{2000}-2}=\frac{3}{\frac{4001}{2000}-\frac{4000}{2000}}=\frac{3}{\frac{1}{2000}}=6000\)

16 tháng 3 2020

c) Để phân thức trên có giá trị nguyên thì :

\(3⋮x-2\)

=>\(x-2\inƯ\left(3\right)=\left(\pm1\pm3\right)\)

=>\(x\in\left\{1,3,-1,5\right\}\)

zậy ....

a) \(A=x^2+3x+7=x^2+2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2+\frac{19}{4}\)

\(=\left(x+\frac{3}{2}\right)^2+\frac{19}{4}\ge\frac{19}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{3}{2}\right)^2=0\)

\(\Leftrightarrow x+\frac{3}{2}=0\)

\(\Leftrightarrow x=-\frac{3}{2}\)

Vậy : \(A_{min}=\frac{19}{4}\Leftrightarrow x=-\frac{3}{2}\).

P/s : Câu này mình đã làm rất chi tiết rồi đó, phân tích ra rồi áp dụng hằng đẳng thức , nếu không hiểu chỗ nào thì hỏi mình nhé, các câu khác tương tự . Học tốt !!

13 tháng 8 2019

@Nguyễn Văn Đạt cảm ơn bạn nhiều nhiểu =))

27 tháng 7 2020

Bài làm:

a) \(3x\left(x+5\right)-\left(3x+18\right)\left(x-1\right)\)

\(=3x^2+15x-3x^2+3x-18x+18\)

\(=18\)=> không phụ thuộc GT biến

b) \(2x\left(x+3\right)-\left(x-5\right)\left(7+2x\right)\)

\(=2x^2+6x-7x-2x^2+35+10x\)

\(=9x+35\)=> có phụ thuộc GT biến

c) \(5x\left(x^2-7x+2\right)-x^2\left(5x-8\right)+27x^2-10x\)

\(=5x^3-35x^2+10x-5x^3+8x^2+27x^2-10x\)

\(=0\)=> không phụ thuộc GT biến

27 tháng 7 2020

cho mk hỏi tại sao chỗ (3x+18)(x-1) bạn lại ra được 3x2+3x -18x+18