K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2019

Bạn tham khảo tại đây:

Câu hỏi của Phạm Huyền Anh - Toán lớp 7 - Học toán với OnlineMath

25 tháng 3 2020

Với  \(k\ge19\)

Xét : \(\frac{20^k+18^k}{k!}-\frac{20^{k+1}+18^{k+1}}{\left(k+1\right)!}=\frac{20^k}{k!}\left(1-\frac{20}{k+1}\right)+\frac{18^k}{k!}\left(1-\frac{18}{k+1}\right)\)

\(\ge\frac{18^k}{k!}\left(2-\frac{38}{k+1}\right)>0\)

=> \(\frac{20^k+18^k}{k!}>\frac{20^{k+1}+18^{k+1}}{\left(k+1\right)!}\)với k >= 19

=> \(\frac{20^{19}+18^{19}}{19!}>\frac{20^{20}+18^{20}}{20!}>\frac{20^{21}+18^{21}}{21!}>...\)(1)

Với \(k\le19\)

\(\frac{20^k+18^k}{k!}-\frac{20^{k-1}+18^{k-1}}{\left(k-1\right)!}=\frac{20^{k-1}}{\left(k-1\right)!}\left(\frac{20}{k-1}-1\right)+\frac{18^{k-1}}{\left(k-1\right)!}\left(\frac{18}{k-1}-1\right)\)

\(>\frac{18^{k-1}}{\left(k-1\right)!}\left(\frac{38}{\left(k-1\right)}-2\right)>0\)

=> \(\frac{20^k+18^k}{k!}>\frac{20^{k-1}+18^{k-1}}{\left(k-1\right)!}\) với k <= 19

=> \(\frac{20^{19}+18^{19}}{19!}>\frac{20^{18}+18^{18}}{18!}>...>\frac{20^1+18^1}{1!}\)(2) 

Từ (1); (2) => k = 19 thì \(\frac{20^k+18^k}{k!}\) có giá trị lớn nhất.

4 tháng 3 2018

a) Ta có: \(A=\left|2x-2\right|+\left|2x-2013\right|=\left|2x-2\right|+\left|2013-2x\right|\ge\left|2x-2+2013-2x\right|=2011\)

Dấu "=" xảy ra khi: \(1\le x\le\frac{2013}{2}\)

b) Không mất tính tổng quát giả sử: \(x\ge y\ge z>0\) ta có: \(x+y+z\le x+x+x=3x\Leftrightarrow xyz\le3x\Leftrightarrow yz\le3\)

Vì \(x;y;z\) là số nguyên dương nên: \(yz\in\left\{1;2;3\right\}\)

Với \(yz=1\Leftrightarrow y=z=1\Leftrightarrow x+2=x\left(l\right)\)

Với \(yz=2\Leftrightarrow y=2;z=1\left(y\ge z\right)\Leftrightarrow x=3\)

Với \(yz=3\Leftrightarrow y=3;z=1\left(y\ge z\right)\Leftrightarrow x=2\)

Vậy: \(x;y;z\) là hoán vị của 1;2;3 hay:

\(\left(x;y;z\right)=\left\{3;2;1\right\};\left(3;1;2\right);\left(2;1;3\right);\left(2;3;1\right);\left(1;2;3\right);\left(1;3;2\right)\)

4 tháng 1 2017

bài dễ ợt mà làm ko đc

4 tháng 1 2017

Không làm mất tính tổng quát, giả sử \(0< x\le y\le z\)

=> \(x+y+z\le3z\Leftrightarrow xyz\le3z\Leftrightarrow xy\le3\)

Mà x;y;z là các số nguyên dương => \(xy\in\left\{1;2;3\right\}\)

Ta xét các trường hợp: 

TH1: \(xy=1\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}\Leftrightarrow2+z=z\Leftrightarrow2=0\) (vô lý!)

TH2: \(xy=2\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}\Leftrightarrow z=3\) (thỏa mãn)

TH3: \(xy=3\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\Leftrightarrow z=2\) (thỏa mãn)

Vậy (x;y;z) là các hoán vị của (1;2;3)