Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : A = 4x2 - 12x + 10
= (2x)2 - 2.2x.3 + 9 + 1
= (2x - 3)2 + 1
Mà : (2x - 3)2 \(\ge0\forall x\)
Nên : (2x - 3)2 + 1 \(\ge1\forall x\)
Vậy giá trị nhỏ nhất của A là 1 khi và chỉ khi x = \(\frac{3}{2}\)
Ta có : x2 + 3x
= x2 + 2x\(\frac{3}{2}\) + \(\frac{9}{4}-\frac{9}{4}\)
= \(\left(x+\frac{3}{2}\right)^2-\frac{9}{4}\)
Mà ; \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)
=> \(\left(x+\frac{3}{2}\right)^2-\frac{9}{4}\) \(\ge-\frac{9}{4}\)
Vậy GTNN của B là : \(-\frac{9}{4}\) khi và chỉ khi \(x=-\frac{3}{2}\)
Ta có:
a) A = x2 + 6x + 10 = (x2 + 6x + 9) + 1 = (x + 3)2 + 1 \(\ge\)1 \(\forall\)x
Dấu "=" xảy ra <=> x + 3 = 0 <=> x = -3
Vậy MinA = 1 <=> x = -3
b) B = 4x2 - 12x + 13 = 4(x2 - 3x + 9/4) + 4 = 4(x - 3/2)2 + 4 \(\ge\)4 \(\forall\)x
Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x = 3/2
Vậy MinB = 4 <=> x = 3/2
a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)
Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)
\(\Rightarrow\left(2x-3\right)^2+91\ge91\)
hay A \(\ge91\)
Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)
<=> 2x-3=0
<=> 2x=3
<=> \(x=\frac{3}{2}\)
Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)
b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)
Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x+\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)
\(C=2x^2+2xy+y^2-2x+2y+2\)
\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)
\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)
Ta có:
\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)
\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)
hay C\(\ge\)1
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)
Vậy Min C=1 đạt được khi y=1 và x=0
a) A = x2 + 12x + 39
= ( x2 + 12x + 36 ) + 3
= ( x + 6 )2 + 3 ≥ 3 ∀ x
Đẳng thức xảy ra ⇔ x + 6 = 0 => x = -6
=> MinA = 3 ⇔ x = -6
B = 9x2 - 12x
= 9( x2 - 4/3x + 4/9 ) - 4
= 9( x - 2/3 )2 - 4 ≥ -4 ∀ x
Đẳng thức xảy ra ⇔ x - 2/3 = 0 => x = 2/3
=> MinB = -4 ⇔ x = 2/3
b) C = 4x - x2 + 1
= -( x2 - 4x + 4 ) + 5
= -( x - 2 )2 + 5 ≤ 5 ∀ x
Đẳng thức xảy ra ⇔ x - 2 = 0 => x = 2
=> MaxC = 5 ⇔ x = 2
D = -4x2 + 4x - 3
= -( 4x2 - 4x + 1 ) - 2
= -( 2x - 1 )2 - 2 ≤ -2 ∀ x
Đẳng thức xảy ra ⇔ 2x - 1 = 0 => x = 1/2
=> MaxD = -2 ⇔ x = 1/2
Ta có A = x2 + 12x + 39 = (x2 + 12x + 36) + 3 = (x + 6)2 + 3 \(\ge\)3
Dấu "=" xảy ra <=> x + 6 = 0
=> x = -6
Vậy Min A = 3 <=> x = -6
Ta có B = 9x2 - 12x = [(3x)2 - 12x + 4] - 4 =(3x - 2)2 - 4 \(\ge\)-4
Dấu "=" xảy ra <=> 3x - 2 =0
=> x = 2/3
Vậy Min B = -4 <=> x = 2/3
b) Ta có C = 4x - x2 + 1 = -(x2 - 4x - 1) = -(x2 - 4x + 4) + 5 = -(x - 2)2 + 5 \(\le\)5
Dấu "=" xảy ra <=> x - 2 = 0
=> x = 2
Vậy Max C = 5 <=> x = 2
Ta có D = -4x2 + 4x - 3 = -(4x2 - 4x + 1) - 2 = -(2x - 1)2 - 2 \(\le\)-2
Dấu "=" xảy ra <=> 2x - 1 = 0
=> x = 0,5
Vậy Max D = -2 <=> x = 0,5
Bài 1:
a) \(25x^2+3-10x=\left(25x^2-10x+1\right)+2=\left(5x-1\right)^2+2>0\)
=>đpcm
b) \(-9x^2-2+6x=-\left(9x^2-6x+1\right)-1=-\left(3x-1\right)^2-1< 0\)
=>đpcm
Bài 2:
\(A=4x^2+3-4x=\left(4x^2-4x+1\right)+2=\left(2x-1\right)^2+2\ge2\)
Vậy \(x=\frac{1}{2}\) thì A đạt GTNN là 2
\(B=-x^2+10x-28=-\left(x^2-10x+25\right)-3=-\left(x-5\right)^2-3\le-3\)
Vậy x=5 thì B đạt GTLN là -3
A = 25x2 + 3 - 10x
= (5x)2 - 2 . 5x . 1 + 1 + 2
= (5x - 1)2 + 2
(5x - 1)2 lớn hơn hoặc bằng 0
(5x - 1)2 + 2 lớn hơn hoặc bằng 2 > 0
Vậy A > 0 vs mọi x (đpcm)
B = - 9x2 - 2 + 6x
= - [(3x)2 - 2 . 3x . 1 + 1 + 1]
= - [(3x - 1)2 + 1]
(3x - 1)2 lớn hơn hoặc bằng 0
(3x - 1)2 + 1 lớn hơn hoặc bằng 1
- [(3x - 1)2 + 1] nhỏ hơn hoặc bằng - 1 < 0
Vậy B < 0 với mọi x (đpcm)
***
A = 4x2 - 4x + 3
= (2x)2 - 2 . 2x . 1 + 1 + 2
= (2x - 1)2 + 2
(2x - 1)2 lớn hơn hoặc bằng 0
(2x - 1)2 + 2 lớn hơn hoặc bằng 2
Min A = 2 khi x = 1/2
B = -x2 + 10x - 28
= - [x2 - 2 . x . 5 + 25 + 3]
= - [(x - 5)2 + 3]
(x - 5)2 lớn hơn hoặc bằng 0
(x - 5)2 + 3 lớn hơn hoặc bằng 3
- [(x - 5)2 + 3] nhỏ hơn hoặc bằng 3
Vậy Max B = 3 khi x = 5
\(1;a,A=x^2+20x+101\)
\(A=x^2+2.10x+10^2+1\)
\(A=\left(x+10\right)^2+1\ge1\)
Dấu "=" xảy ra khi x = -10
Vậy Min A = 1 <=> x = -10
Ta có
A=x2_6x+11=x2_2x3xx+32+2=(x-3)2+2>=2
=>MIN A=2 khi và chỉ khi x-3=0 hay x=3
B=x2-20x+101=x2-2x10xx+102+1=(x-10)2+1>=1
=>MIN B=1 khi và chỉ khi x-10=0 hay x=10
a) \(M=x^2+10x+28=\left(x^2+10+25\right)+3=\left(x+5\right)^2+3\ge3\)
\(minM=3\Leftrightarrow x=-3\)
b) \(P=4x^2-12x+10=\left(4x^2-12x+9\right)+1=\left(2x-3\right)^2+1\ge1\)
\(minP=1\Leftrightarrow x=\dfrac{3}{2}\)
cảm ơn