K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

x4+3x2-4

=(x2)2+1,5.2.x2+2,25-6,25

=(x2+1,5)2-6,25>(=)-6,25

9 tháng 7 2016

=[ (x^2)^2 + 2.x^2.3/2 + 9/4 ] +7/4

= ( x^2 + 3/2)^2 +7/4 >= 7/4

Vì (x^2 +3/2)^2 >= 0 với mọi x

Dấu = xảy ra <=> x= -3/2

24 tháng 9 2015

Ta có -|1,5 - x| < 0

=> 19,5 - |1,5 - x| < 19,5

Vậy GTLN của Q là 19,5 <=> 1,5 - x = 0 <=> x = 1,5

13 tháng 2 2017

gtnn mà

30 tháng 4 2018

ta có x4+3x2 \(\ge\)0

=>\(x^4+3x^2+3\ge3\)

vậy giá trị nhỏ nhất của biểu thức =3

30 tháng 4 2018

\(P\left(x\right)=x^4+3x^2+3=\left(x^2+\frac{3}{2}\right)^2+\frac{3}{4}\)

nhận thấy \(x^2+\frac{3}{4}\ge\frac{3}{4}\) suy ra \(\left(x^2+\frac{3}{2}\right)^2\ge\frac{9}{4}\)

Suy ra \(P\left(x\right)\ge\frac{9}{4}+\frac{3}{4}=\frac{12}{4}=3\)

Vậy Min = 3 <=> x = 0 

31 tháng 10 2017

Bạn chịu khó vào link này nhé : https://h.vn/hoi-dap/question/49863.html

13 tháng 3 2016

câu 2a) xét (x-1)2> hoặc = 0

(x-1)2+(y+1)2> hoặc bằng 0

(x-1)2+(y+1)2+3> hoặc =3

=> GTNN của biểu thức trên là 3

13 tháng 3 2016

GIÚP minh vs mai mình nộp rui!!!!!!!!!!!!!!!!!!!!@@@@@@@@@@

26 tháng 5 2020

1) 

Ta có: \(\left(x+3\right)^2\ge0;\left|y+1\right|\ge0\) với mọi số thực x; y 

=> \(\left(x+3\right)^2+\left|y+1\right|+5\ge0+0+5=5\)

Dấu "=" xảy ra <=> x + 3 = 0 và y + 1 = 0  <=> x = -3 và y = -1

=> \(\left(x+3\right)^2+\left|y+1\right|+5\) đạt giá trị bé nhất bằng 5  tại x = -3 và y = -1

=> \(\frac{2020}{\left(x+3\right)^2+\left|y+1\right|+5}\)đạt giá trị lớn nhất bằng \(\frac{2020}{5}=404\) tại x = -3 và y = -1 

 2) \(M=2x^4+3x^2y^2+y^4+y^2\)

\(=\left(2x^4+2x^2y^2\right)+\left(x^2y^2+y^4\right)+y^2\)

\(=2x^2\left(x^2+y^2\right)+y^2\left(x^2+y^2\right)+y^2\)

\(=2x^2+y^2+y^2=2x^2+2y^2=2\left(x^2+y^2\right)=2\)

10 tháng 9 2017

a, Ta có: \(A=\left|x+2\right|+\left|9-x\right|\ge\left|X+2+9-x\right|=11\)

Dấu "=' xảy ra khi \(\left(x+2\right)\left(9-x\right)\ge0\Leftrightarrow-2\le x\le9\)

Vậy MinA = 11 khi -2 =< x =< 9

b, Vì \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow B=\frac{3}{4}-\left(x-1\right)^2\le\frac{3}{4}\)

Dấu "=" xảy ra khi x = 1

Vậy MaxB = 3/4 khi x=1

10 tháng 9 2017

Ta có :\(A=\left|x+2\right|+\left|9-x\right|\ge\left|x+2+9-x\right|=11\)

Vậy \(A_{min}=11\) khi \(2\le x\le9\)