Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-\frac{1}{5}\right)^2+\frac{11}{12}>=\frac{11}{12}\)
=> A đạt GTNN bằng \(\frac{11}{12}\)
dấu bằng xảy ra <=> \(\left(x-\frac{1}{5}\right)^2=0\)
<=> \(x=\frac{1}{5}\)
A = + 11/12
Có ( x- 1/ 5)2 \(\ge\)0 \(\forall\)x thuộc R ( Kí hiệu \(\forall\) đọc là : với mọi )
\(\Rightarrow\)( x-1/5)2 + 11 / 2 \(\ge\)0 + 11/ 2
\(\Rightarrow\)A\(\ge\)11/2
\(\Rightarrow\)A = 11/2 \(\Leftrightarrow\)( x - 1/5 )2 = 0
\(\Leftrightarrow\)x - 1/5 =0
\(\Leftrightarrow\)x = 1/5
Vậy GTNN của A=11/2 \(\Leftrightarrow\)x = 1/5
Ta có: 9x^2 - 6x +5= 9x^2 - 6x + 1 +4 = (3x+1)^2 +4 lớn hơn hoặc bằng 4 với mọi x Suy ra GTNN của biểu thức trên = 4 khi và chỉ khi x= -1/3. Vậy x=-1/3 thì GTNN của biểu thức là 4
Ta có: \(\left|x-\frac{1}{2}\right|\ge0\forall x\)
\(\left(y+2\right)^2\ge0\forall y\).
Do đó: \(A=\left|x-\frac{1}{2}\right|+\left(y+2\right)^2+11\)
\(\ge0+0+11=11\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x-\frac{1}{2}\right|=0\\\left(y+2\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-2\end{cases}}\)
Ta có : E = (x - 1) (x + 2)(x + 3)(x + 6)
=> E = [(x - 1)(x + 6)][(x + 2)(x + 3)]
=> E = (x2 + 5x - 6)(x2 + 5x + 6)
=> E = (x2 + 5x)2 - 62
=> E = (x2 + 5x)2 - 36
Mà : (x2 + 5x)2 \(\ge0\forall x\)
Nên : (x2 + 5x)2 - 36 \(\ge-36\forall x\)
Vậy GTNN của biểu thức là 36 tại x2 + 5x = 0 => x(x + 5) = 0 => x = 0 ; -5
\(A=\frac{3}{\left(x+2\right)^2+4};\left(x+2\right)^2\in N\)
\(\Rightarrow A_{max}\Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow\left(x+2\right)^2+4=4\)
\(\Rightarrow A_{max}=\frac{3}{4}\)
b, \(B=\left(x+1\right)^2+\left(y+3\right)^2+1\)
Mặt khác: \(\left(x+1\right)^2;\left(y+3\right)^2\in N\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2\ge0\)
\(\Rightarrow B_{min}\Leftrightarrow\left(x+1\right)^2+\left(y+3\right)^2=0\Rightarrow B_{min}=1\)
\(A=\frac{3}{\left(x+2\right)^2+4}\)
Để A max
=>(x+2)^2+4 min
Mà\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+4\ge4\)
Vậy Min = 4 <=>x=-2
Vậy Max A = 3/4 <=> x=-2
\(b,B=\left(x+1\right)^2+\left(y+3\right)^2+1\)
Có \(\left(x+1\right)^2\ge0;\left(y+3\right)^2\ge0\)
\(\Rightarrow B\ge0+0+1=1\)
Vậy MinB = 1<=>x=-1;y=-3
-x2+6x+2=-(x2-6x-2) = -(x-3)2+11
Ta có (x-3)2 > 0 với mọi x
=> -(x-3)2 < 0 với mọi x
=> -(x-3)2+11 < 11
Dấu "=" xảy ra khi \(\left(x-3\right)^2=0\Leftrightarrow x=3\)
-x2 + 6x +2 = -x2 + 6x -9 +11
= -( x2 -6x +9 ) +11
= -(x-3)2 +11
Ta nhận thấy:
(x-3)2 lớn hơn hoặc bằng 0 => -(x-3)2 bé hơn hoặc bằng 0
Khi đó -(x-3)2 + 11 bé hơn hoặc bằng 11.
Dấu "=" xảy ra khi -(x-3)2 =0 <=> x-3=0 <=> x=3
Vậy giá trị lớn nhất của biểu thức -x2 +6x +2 là 11 khi x=3
\(P=x^2-6x+9+2\)
\(P=\left(x-3\right)^2+2\)
Do \(\left(x-3\right)^2\ge0\) ;\(\forall x\)
\(\Rightarrow P\ge0+2\Rightarrow P\ge2\)
Vậy \(P_{min}=2\) khi \(x=3\)