Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(E=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)
Để E đạt \(GTNN\) thì tích E phải có lẻ thừa số âm .
\(\left(x-1\right)< \left(x+2\right)< \left(x+3\right)< \left(x+6\right)\)
\(\Rightarrow\begin{cases}x-1< 0\\x+2>0\end{cases}\)
\(\Rightarrow\begin{cases}x< 1\\x>-2\end{cases}\)
\(\Leftrightarrow-2< x< 1\)
Hoặc :
\(\begin{cases}x+3< 0\\x+6>0\end{cases}\)
\(\Rightarrow\begin{cases}x< -3\\x>-6\end{cases}\)
\(\Rightarrow-3< x< -6\).
E = (x-1)(x+2)(x+3)(x+6)
Để E nhỏ nhất thì tích E phải có lẻ thừa số âm
(x-1)<(x+2)<(x+3)<(x+6)
\(\Rightarrow\hept{\begin{cases}x-1< 0\\x+2>0\end{cases}\Rightarrow\hept{\begin{cases}x< 1\\x>-2\end{cases}\Leftrightarrow}-2< x< 1.}\)
Hoặc
\(\hept{\begin{cases}x+3< 0\\x+6>0\end{cases}\Rightarrow\hept{\begin{cases}x< -3\\x>-6\end{cases}\Leftrightarrow}-3< x< -6.}\)
Answer:
a) \(\frac{5x}{2x+2}+1=\frac{6}{x+1}\)
\(\Rightarrow\frac{5x}{2\left(x+1\right)}+\frac{2\left(x+1\right)}{2\left(x+1\right)}=\frac{12}{2\left(x+1\right)}\)
\(\Rightarrow5x+2x+2-12=0\)
\(\Rightarrow7x-10=0\)
\(\Rightarrow x=\frac{10}{7}\)
b) \(\frac{x^2-6}{x}=x+\frac{3}{2}\left(ĐK:x\ne0\right)\)
\(\Rightarrow x^2-6=x^2+\frac{3}{2}x\)
\(\Rightarrow\frac{3}{2}x=-6\)
\(\Rightarrow x=-4\)
c) \(\frac{3x-2}{4}\ge\frac{3x+3}{6}\)
\(\Rightarrow\frac{3\left(3x-2\right)-2\left(3x+3\right)}{12}\ge0\)
\(\Rightarrow9x-6-6x-6\ge0\)
\(\Rightarrow3x-12\ge0\)
\(\Rightarrow x\ge4\)
d) \(\left(x+1\right)^2< \left(x-1\right)^2\)
\(\Rightarrow x^2+2x+1< x^2-2x+1\)
\(\Rightarrow4x< 0\)
\(\Rightarrow x< 0\)
e) \(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}\le\frac{x^2}{7}-\frac{2x-3}{5}\)
\(\Rightarrow\frac{2x-3+5\left(x^2-2x\right)}{35}\le\frac{5x^2-7\left(2x-3\right)}{35}\)
\(\Rightarrow2x-3+5x^2-10x\le5x^2-14x+21\)
\(\Rightarrow6x\le24\)
\(\Rightarrow x\le4\)
f) \(\frac{3x-2}{4}\le\frac{3x+3}{6}\)
\(\Rightarrow\frac{3\left(3x-2\right)-2\left(3x+3\right)}{12}\le0\)
\(\Rightarrow9x-6-6x-6\le0\)
\(\Rightarrow3x\le12\)
\(\Rightarrow x\le4\)
A=(x−1)(x−2)(x−3)(x−4)+5A=(x−1)(x−2)(x−3)(x−4)+5
⇔A=[(x−1)(x−4)][(x−2)(x−3)]+5⇔A=[(x−1)(x−4)][(x−2)(x−3)]+5
⇔A=(x2−4x−x+4)(x2−3x−2x+6)+5⇔A=(x2−4x−x+4)(x2−3x−2x+6)+5
⇔A=(x2−5x+4)(x2−5x+6)+5⇔A=(x2−5x+4)(x2−5x+6)+5
⇔A=(x2−5x+4)[(x2−5x+4)+2]+5⇔A=(x2−5x+4)[(x2−5x+4)+2]+5
⇔A=(x2−5x+4)2+2(x2−5x+4)+5⇔A=(x2−5x+4)2+2(x2−5x+4)+5
⇔A=(x2−5x+4)2+2x2−10x+8+5⇔A=(x2−5x+4)2+2x2−10x+8+5
⇔A=(x2−5x+4)2+2x2−10x+13⇔A=(x2−5x+4)2+2x2−10x+13
⇔A=(x2−5x+4)2+2x2−10x+252+12⇔A=(x2−5x+4)2+2x2−10x+252+12
⇔A=(x2−5x+4)2+(2x2−10x+252)+12⇔A=(x2−5x+4)2+(2x2−10x+252)+12
⇔A=(x2−5x+4)2+2(x2−5x+254)+12⇔A=(x2−5x+4)2+2(x2−5x+254)+12
⇔A=(x2−5x+4)2+2[x2−2.x.52+(52)2]+12⇔A=(x2−5x+4)2+2[x2−2.x.52+(52)2]+12
⇔A=(x2−5x+4)2+2(x−52)2+12⇔A=(x2−5x+4)2+2(x−52)2+12
Vậy GTNN của A=12A=12 khi ⎧⎩⎨x2−5x+4=0x−52=0{x2−5x+4=0x−52=0 ⇔⎧⎩⎨x2−5x+4=0(loai)x=52
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
A=(x−1)(x−2)(x−3)(x−4)+5A=(x−1)(x−2)(x−3)(x−4)+5
⇔A=[(x−1)(x−4)][(x−2)(x−3)]+5⇔A=[(x−1)(x−4)][(x−2)(x−3)]+5
⇔A=(x2−4x−x+4)(x2−3x−2x+6)+5⇔A=(x2−4x−x+4)(x2−3x−2x+6)+5
⇔A=(x2−5x+4)(x2−5x+6)+5⇔A=(x2−5x+4)(x2−5x+6)+5
⇔A=(x2−5x+4)[(x2−5x+4)+2]+5⇔A=(x2−5x+4)[(x2−5x+4)+2]+5
⇔A=(x2−5x+4)2+2(x2−5x+4)+5⇔A=(x2−5x+4)2+2(x2−5x+4)+5
⇔A=(x2−5x+4)2+2x2−10x+8+5⇔A=(x2−5x+4)2+2x2−10x+8+5
⇔A=(x2−5x+4)2+2x2−10x+13⇔A=(x2−5x+4)2+2x2−10x+13
⇔A=(x2−5x+4)2+2x2−10x+252+12⇔A=(x2−5x+4)2+2x2−10x+252+12
⇔A=(x2−5x+4)2+(2x2−10x+252)+12⇔A=(x2−5x+4)2+(2x2−10x+252)+12
⇔A=(x2−5x+4)2+2(x2−5x+254)+12⇔A=(x2−5x+4)2+2(x2−5x+254)+12
⇔A=(x2−5x+4)2+2[x2−2.x.52+(52)2]+12⇔A=(x2−5x+4)2+2[x2−2.x.52+(52)2]+12
⇔A=(x2−5x+4)2+2(x−52)2+12⇔A=(x2−5x+4)2+2(x−52)2+12
Vậy GTNN của A=12A=12 khi ⎧⎩⎨x2−5x+4=0x−52=0{x2−5x+4=0x−52=0 ⇔⎧⎩⎨x2−5x+4=0(loai)x=52
`A=x^2-4x+1`
`=x^2-4x+4-3`
`=(x-2)^2-3>=-3`
Dấu "=" xảy ra khi x=2
`B=4x^2+4x+11`
`=4x^2+4x+1+10`
`=(2x+1)^2+10>=10`
Dấu "=" xảy ra khi `x=-1/2`
`C=(x-1)(x+3)(x+2)(x+6)`
`=[(x-1)(x+6)][(x+3)(x+2)]`
`=(x^2+5x-6)(x^2+5x+6)`
`=(x^2+5x)^2-36>=-36`
Dấu "=" xảy ra khi `x=0\or\x=-5`
`D=5-8x-x^2`
`=21-16-8x-x^2`
`=21-(x^2+8x+16)`
`=21-(x+4)^2<=21`
Dấu "=" xảy ra khi `x=-4`
`E=4x-x^2+1`
`=5-4+4-x^2`
`=5-(x^2-4x+4)`
`=5-(x-2)^2<=5`
Dấu "=" xảy ra khi `x=5`