Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A= 2x2-8x+10 = 2(x-2)2+2\(\ge\)2\(\Leftrightarrow\)x=2
Vậy MinA=2 \(\Leftrightarrow\)x=2
b) B= -(x-1)2-(2y+1)2+7 \(\le\)7
Dấu = xảy ra khi x=1 và y=\(\frac{-1}{2}\)
Vậy MaxB=7 ....
VD câu a thôi hơi dài đấy
\(A=x^2-6x+11\)
\(A=x^2-2\cdot x\cdot3+3^2+2\)( biến đổi về dạng hằng đẳng thức )
\(A=\left(x-3\right)^2+2\)
Mà ( x - 3 )2 luôn >= 0 với mọi x
\(\Rightarrow A\ge2\)với mọi x
Dấu "=" xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy,..........
\(B=x^2-20x+101=x^2-20x+100+1=\left(x-10\right)^2+1\ge1\)
B min = 1\(\Leftrightarrow x=10\)
a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)
Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)
\(\Rightarrow\left(2x-3\right)^2+91\ge91\)
hay A \(\ge91\)
Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)
<=> 2x-3=0
<=> 2x=3
<=> \(x=\frac{3}{2}\)
Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)
b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)
Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x+\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)
\(C=2x^2+2xy+y^2-2x+2y+2\)
\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)
\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)
Ta có:
\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)
\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)
hay C\(\ge\)1
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)
Vậy Min C=1 đạt được khi y=1 và x=0
A=x2-2x+1+y2-4y+4+2 = (x-1)2+(y-2)2 + 2\(\ge\)2 Với mọi x, y
=> Amin = 2 đạt được khi x=1 và y=2
\(A=x^2-2x+y^2-4y-7=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)-12.\)
\(=\left(x-1\right)^2+\left(y-2\right)^2-12\)
Vì \(\left(x-1\right)^2+\left(y-2\right)^2\ge0\)nên \(\left(x-1\right)^2+\left(y-2\right)^2-12\ge-12\)
Vậy GTNN của A là -12 tại \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y-2\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}}\)
=\(-\left(x-y+2\right)^2-\left(x-2\right)^2+16\)
vì \(-\left(x-y+2\right)^2\le0\)\(-\left(x-2\right)^2\le0\)=> gtln của bt là 16
A = (x-1)(x+2)(x+3)(x+6)
= (x - 1)(x + 6)(x + 2)(x + 3)
= ( x2 + 5x - 6)(x2 + 5x + 6)
= ( x2 + 5x )2 - 36 \(\ge\) -36
Dấu "=" <=> x = 0 hoặc x = -5
Vậy A min = -36 <=> x = 0 hoặc x = - 5 .
B=x2 - 2x+y2 +4y+8
=x2-2x+1+y2+4y+4+3
=(x-1)2+(y+2)2+3
=(x-1)2+(y+2)2+3 \(\ge\)3
Dấu "=" <=>x=1 và y=-2
Vậy A min=3 <=>x=1 và y=-2
1. nhóm (x-1)(x+6)(x+2)(x+3)
nhân vào
sẽ ra (x^2+6x-x-6)(x^2+3x+2x+6)
từ đó suy ra
(x^2-5x)^2 - 6^2
vì (x^2-5x)^2 lun lớn hon ko
nên dấu “=” xảy ra khi (x^2-5x)^2=0
x^2-5x = 0 <=> x(x-5)=0 <=> x= 0 hoặc x = 5
\(C=x^2-2x+y^2+4y+8\)
\(C=\left(x^2-2x\right)+\left(y^2+4y\right)+8\)
\(C=\left(x^2-2\cdot x\cdot1+1^2\right)+\left(y^2+2\cdot y\cdot2+2^2\right)+\left(8-1-2^2\right)\)
\(C=\left(x-1\right)^2+\left(y+2\right)^2+3\)
mà (x-1)2 và (y+2)2 luôn lớn hơn hoặc bằng 0
\(\Rightarrow C\ge3\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}}\)
Vậy, Cmin = 3 <=> x = 1; y = -2
thanks b