K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2016

a) |x+3/4| >/ 0 

|x+3/4| + 1/2 >/ 1/2 

MinA= 1/2  <=>  x+3/4 =0 hay x= -3/4

b) 2|2x-4/3|  >/  0 

2|2x-4/3| -1 >/ -1

Min= -1 <=>  2|2x-4/3| = 0 hay x=2/3

Bài tiếp théo:

a) -2|x+4| \< 0 

-2|x+4| +1 \<  1

MaxA=1  <=> -2|x+4| = 0 hay = -4

b) -3|x-5|   \<  0

-3|x-5| + 11/4  \<  11/4 

MaxB=11/4  <=>  -3|x-5| = 0 hay x=-5  

8 tháng 9 2019

Hai bài này có mấy cái bình phương sẵn rồi nên chỉ sài cái bất đẳng thức \(A^2\ge0\)là được rồi

a/Ta có \(\left(2x+\frac{1}{3}\right)^4\ge0\)

Do đó \(\left(2x+\frac{1}{3}\right)^4-1\ge0-1\)

\(\Leftrightarrow A\ge-1\)

Tới đây vì A lớn hơn hoặc bằng -1 nên giá trị nhỏ nhất của A là -1

Vậy Giá trị nhỏ nhất của A là -1

b/Bạn làm hệt như câu a, với lại nếu bạn suy ra \(A\ge-1\)thì bạn kết luận luôn Giá trị nhỏ nhất của A là -1

17 tháng 4 2020

eeeee

7 tháng 9 2016

Ta có: \(\left(2x-1\right)^4-3\le-3\)

Dấu "=" xảy ra khi và chỉ khi (2x - 1)4 = 0; khi đó 2x - 1 = 0 => 2x = 1 => x = 1/2

Vậy GTNN của (2x - 1)4 - 3 = -3 khi và chỉ khi x = 1/2

16 tháng 3 2018

Do \(\left(2x-1\right)^4\ge0\forall x\)

\(\Rightarrow\left(2x-1\right)^4-3\ge-3\forall x\)

Dấu "=" xảy ra khi :

\(2x-1=0\Rightarrow x=\frac{1}{2}\)

Vậy biểu thức trên có giá trị nhỏ nhất là -3 khi \(x=\frac{1}{2}\)

15 tháng 2 2018

\(P=x^4+2x^3+3x^2+2x+1\)

\(=\left(x^4+2x^2+1\right)+\left(2x^3+2x\right)+x^2\)

\(=\left(x^2+1\right)^2+2x\left(x^2+1\right)+x^2\)

\(=\left(x^2+x+1\right)^2\)

15 tháng 2 2018

giải tiếp : 

Vì \(x^2+x+1=\left(x^2+2x.\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}\)

                            \(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Nên  \(P\ge\left(\frac{3}{4}\right)^2=\frac{9}{16}\)

Dấu "=" xảy ra khi và chỉ khi  \(x=-\frac{1}{2}\)

20 tháng 6 2017

Bạn có thể gõ dấu gttd bằng cách giữ phím Shift và nhấn phím bên trái phím xoá đó

a) Ta có:

\(\left|3x-1\right|\ge0\forall x\)

=> GTNN của biểu thức đã cho là 0, đạt được khi:

3x -1 = 0

3x = 1

x = -1/3

b) Ta có:

\(4\left|3+2x\right|\ge0\forall x\)

=> \(4\left|3+2x\right|+1\ge1\forall x\)

=> GTNN của biểu thức đã cho là 1, đạt được khi:

4|3+2x|=0

|3+2x|=0

3+2x = 0

2x = -3

x = -3/2