Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có P = x^2 +y^2-xy-x+y+1
=> 2A =2x^2 + 2y^2 -2xy -2x +2y+2 =(x^2 -2xy +y^2)+ (x^2 -2x+1) +(y^2 +2y +1) =(x-y)^2 +(x-1)^2 +(y+1)^2 >=0
=> Min A =0
Còn lại bạn tự giải nka!@
mk mới học lớp 6 nên chưa biết được nhiều nhak xin lỗi
Ta có: \(P=x^2+y^2-xy-x+y+1\)
\(\Rightarrow4P=4x^2+4y-4xy-4x+4y+4\)
\(=\left(4x^2-4xy+y^2\right)-2\left(2x-y\right)+3y^2+2y+4\)
\(=\left(2x-y\right)^2-2\left(2x-y\right)+1+3\left(y^2+\frac{2}{3}y+\frac{1}{9}\right)+\frac{8}{3}\)
\(=\left[\left(2x-y\right)-1\right]^2+3\left(y+\frac{1}{3}\right)^2+\frac{8}{3}\)
\(=\left(2x-y-1\right)^2+3\left(y+\frac{1}{3}\right)^2+\frac{8}{3}\)
Vậy min4P = \(\frac{8}{3}\Rightarrow minP=\frac{2}{3}\)
\(P_{min}=\frac{2}{3}\Leftrightarrow\hept{\begin{cases}y+\frac{1}{3}=0\\2x-y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=\frac{-1}{3}\\x=\frac{1}{3}\end{cases}}\)
\(M=x^2+y^2-xy-x+y+1\)
\(=\left(x^2-xy+\frac{1}{4}y^2\right)-\left(x-\frac{1}{2}y\right)+\frac{1}{4}+\left(\frac{3}{4}y^2+\frac{1}{2}y+\frac{1}{12}\right)+\frac{2}{3}\)
\(=\left(x-\frac{1}{2}y\right)^2-\left(x-\frac{1}{2}y\right)+\frac{1}{4}+\frac{3}{4}\left(y^2+\frac{2}{3}y+\frac{1}{9}\right)+\frac{2}{3}\)
\(=\left(x-\frac{1}{2}y-\frac{1}{2}\right)^2+\frac{3}{4}\left(y+\frac{1}{3}\right)^2+\frac{2}{3}\ge\frac{2}{3}\forall x;y\)có GTNN là \(\frac{2}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{1}{3};y=-\frac{1}{3}\)
mình làm thế này có đúng không bạn?
ta có : \(M=x^2+y^2-xy-x+y+1\)
<=> \(2M=2x^2+2y^2-2xy-2x+2y+2\)
<=> \(2M=x^2-2xy+y^2+x^2-2x+1+y^2+2y+1\)
<=>\(2M=\left(x-y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\)
<=> \(M=\frac{\left(x-y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2}{2}\)\(\ge0\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-y=0\\x-1=0\\y+1=0\end{cases}}\)<=>\(\hept{\begin{cases}x=y\\x=1\\y=-1\end{cases}}\)
\(A=x^2+y^2+xy-6x-6y+2\)
\(\Rightarrow4A=4x^2+4y^2+4xy-24x-24y+8\)
\(=\left(4x^2+4xy+y^2\right)+3y^2-24x-24y+8\)
\(=\left[\left(2x+y\right)^2-12\left(2x+y\right)+36\right]+3y^2-12y-28\)
\(=\left(2x+y-6\right)^2+3\left(y^2-4y+4\right)-40\)
\(=\left(2x+y-6\right)^2+3\left(y-2\right)^2-40\ge-40\)
\(\Rightarrow4A\ge-40\)
\(\Rightarrow A\ge-10\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x+y-6=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}2x=6-y\\y=2\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=2\end{cases}}}\)
Vậy \(A_{min}=-10\Leftrightarrow x=y=2\)
P/S: cách giải trên gọi là cách chung riêng !