K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2019

Vì |2013-x|>=x-2013;|2014-x|>=2014-x => P>=1

Dấu = xảy ra <=> 2013-x<=0;2014-x>=0 => x>=2013; x<=2014

VẬy GTNN P là 1 tại 2013<=x<=2014

24 tháng 3 2019

Ta có :

A=|x-2013|+|x-2014|+|x-2015|

<=> A=|2013-x|+|x-2014|+|x-2015|

>hoặc =|2013-x+x+2015|+|x-2014

=|2|+|x-2015|=2+|x-2015|

=>GTNN của A =2 khi :

|x-2015|=0=>x-2015=0=>x=2015

Vậy GTNN của A=2 khi x=2015

24 tháng 3 2019

A = |x - 3013| + |2014 - x| + |x - 2015| 

có : |x - 2013| > x - 2013

       |2014 - x| > 2014 - x

       |x - 2015| >

=> A > x - 2013 + 2014 - x

=> A > 1

=> Min A = 1

dấu = xảy ra khi 

...

21 tháng 4 2015

Vì 2014-2014=0 và 2014-2013=1.Mà 0/1=0 Nên x=2014

 

21 tháng 4 2015

bạn chia trên tử dưới mẫu ra ta được -1+1\(x-2013)...-1 không thay đổi mà để nó là số nguyên thì x-2013 chia hết cho 1 nên x=2012 or 2014 mà đề cho là số nguyên nhỏ nhất nên x=2012 vây M=-2 là nhỏ nhất

 

26 tháng 4 2015

\(M=\frac{1+2013-x}{x-2013}=\frac{1}{x-2013}+\frac{2013-x}{x-2013}=\frac{1}{x-2013}-1\)

Đê M nhỏ nhất thì \(\frac{1}{x-2013}\) là số nguyên âm nhỏ nhất => \(\frac{1}{2013-x}\) là số nguyên dương lớn nhất => 2013 - x là số nguyên dương nhỏ nhất 

=> 2013 - x = 1 => x = 2013 - 1 = 2012

Vậy x = 2012 thì M nhỏ nhất

13 tháng 12 2019

Ta có: A = |x - 2019| + |x - 2020|

=> A = |x - 2019| + |2020 - x| \(\ge\)|x - 2019 + 2020 - x| = |1| = 1

Dấu "=" xảy ra <=> \(\left(x-2019\right)\left(2020-x\right)\ge0\)

<=> \(2019\le x\le2020\)

Vậy MinA = 1 <=> 2019 \(\le\)\(\le\)2020

12 tháng 2 2020

Mình giống bạn Edogawa Conan nhé

nhé !

Mình mới đăng kí !

10 tháng 10 2020

\(A=\left|x-2\right|+\left|x-9\right|+\left|1945-x\right|\)

\(x\ge9\)

\(A=\left|1945-x-11\right|\)

\(A=\left|1945-11-11\right|\left(min/x=11\right)\)

\(A=\left|1945\right|\)

GTNN = \(\left|1945\right|\)(:

1 tháng 8 2019

Tìm GTNN

Ta có: A = |x - 1| + |x - 4|

=>  A = |x - 1| + |4 - x| \(\ge\)|x - 1 + 4 - x| = |3| = 3

=> A \(\ge\)3

Dấu "=" xảy ra <=> (x - 1)(x - 4) \(\ge\)0

<=> \(1\le x\le4\)

Vậy Min A = 3 <=> \(1\le x\le4\)

Tìm GTLN

Ta có: -|x + 2| \(\le\)\(\forall\)x

hay A  \(\le\)\(\forall\)x

Dấu "=" xảy ra <=> x + 2 = 0 <=> x = -2

Vậy Max A = 0 <=> x = -2

14 tháng 2 2019

Áp dụng BĐT trị tuyệt đối ta được:

\(A=\left|x\right|+\left|8-x\right|\)

\(\ge\left|x+8-x\right|=\left|8\right|=8\)

Dấu "=" xả ra khi và chỉ khi:

\(x\left(8-x\right)\ge0\)

\(\Leftrightarrow0\le x\le8\)

Vậy:\(A_{min}=8\Leftrightarrow0\le x\le8\)