K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2020

Đành chơi trò như này vậy:

\(A=\frac{x^2-3x+2019}{x^2}=1-\frac{3}{x}+\frac{2019}{x^2}\)

Đặt \(a=\frac{1}{x}\)

Khi đó:\(A=2019a^2-3a+1=2019\left(a^2-2\cdot\frac{3}{4038}\cdot a+\frac{9}{4038^2}\right)+\frac{2689}{2692}\)

\(=2019\left(a-\frac{3}{4038}\right)^2+\frac{2689}{2692}\ge\frac{2689}{2692}\)

Đẳng thức xảy ra tại a=1/1346

29 tháng 6 2020

Ta có: 

\(P=\frac{x+12}{\sqrt{x}+2}=\sqrt{x}-2+\frac{16}{\sqrt{x}+2}\)

\(=\left(\sqrt{x}+2\right)+\frac{16}{\sqrt{x}+2}-4\ge2\sqrt{\left(\sqrt{x}+2\right).\frac{16}{\sqrt{x}+2}}-4=4\)

Dấu "=" xảy ra <=> \(\sqrt{x}+2=\frac{16}{\sqrt{x}+2}\Leftrightarrow\sqrt{x}+2=4\Leftrightarrow x=4\) thỏa mãn

=> min P = 4 tại x = 4.

1 tháng 5 2018

C = ..................................................................... ( giống cái đề bài )

   = ( x + 2017 ) + ( x + 2018 ) + ( x + 2019 )

   = ( x + x + x )  + ( 2017 + 2018 + 2019 )

   = 3x + 6054

Vì ( x + 2017 ) là căn bậc 2 của ( x+2017 )^2 => x+2017 > hoặc = 0

    ( x + 2018 ) ........................... ( x+2018)^2 => x+2018 > hoặc = 0

     ( x + 2019) ............................( x+2019 )^2 => x+2019 > hoặc = 0

SUY RA ( x+2017 ) + ( x+2018 ) + ( x+2019 ) > hoặc = 0 => 3x + 6054 > hoặc = 0

dấu đẳng thức xảy ra <=> 3x + 6054 = 0 <=> 3x = - 6054 <=> x = - 2018

Vậy C có GTNN là 0 khi x = - 2018

NV
20 tháng 5 2019

\(A=\frac{4x^2y^2}{\left(x^2+y^2\right)^2}+\frac{x^4}{x^2y^2}+\frac{y^4}{x^2y^2}\ge\frac{4x^2y^2}{\left(x^2+y^2\right)^2}+\frac{\left(x^2+y^2\right)^2}{2x^2y^2}\)

\(A\ge\frac{4x^2y^2}{\left(x^2+y^2\right)^2}+\frac{\left(x^2+y^2\right)^2}{4x^2y^2}+\frac{\left(x^2+y^2\right)^2}{4x^2y^2}\ge2\sqrt{\frac{4x^2y^2\left(x^2+y^2\right)^2}{4x^2y^2\left(x^2+y^2\right)^2}}+\frac{\left(x^2+y^2\right)^2}{\left(x^2+y^2\right)^2}=3\)

\(\Rightarrow A_{min}=3\) khi \(x^2=y^2=1\)

Đặt \(t=\frac{1}{2004y}\)

Bài toán đưa về tìm x để t bé nhất 

Ta có \(t=\frac{\left(x+2004\right)^2}{2004x}=\frac{x^2+2.2004x+2004^2}{2004x}\)

\(=\frac{x}{2004}+2+\frac{2004}{x}=\frac{x^2+2004^2}{2004x}+2\)(1)

Ta thấy : Theo bất đẳng thức Côsi cho 2 số nguyên dương ta có :

\(x^2+2004^2\ge2.2004.x\)

\(\Rightarrow\frac{x^2+2004^2}{2004x}\ge2\)(2)

Dấu ''='' xảy ra khi x=2004

Từ (1) và (2) \(\Rightarrow t\ge4\)

Vậy giá trị bé nhất của \(t=4\)khi \(x=2004\)

Vậy \(y_{max}=\frac{1}{2004t}=\frac{1}{8016}\)Khi \(x=2004\)

6 tháng 10 2018

Ai giải giúp mình bài 1 với bài 4 trước đi