K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2019

\(\left(x^2+4x+4\right)+\left(y^2-2.y.\frac{1}{2}+\frac{1}{4}\right)+\frac{8055}{4}\ge\frac{8055}{4}\)

25 tháng 10 2019

\(x^2+y^2+4x-y+2018\)

\(=x^2+4x+4+y^2-y+\frac{1}{4}+\frac{8055}{4}\)

\(=\left(x+2\right)^2+\left(y-\frac{1}{2}\right)^2+\frac{8055}{4}\ge\frac{8055}{4}\forall x;y\)

Dấu"=" xả ra<=> \(\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y-\frac{1}{2}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=\frac{1}{2}\end{cases}}}\)

Vậy.

28 tháng 12 2017

Có x^2 + 2xy + 4x + 4y + 2y^2 + 3 = 0

--> (x+y)^2 + 4(x+y) + 4+ y^2 - 1 = 0

--> (x+y+2)^2 + y^2 = 1

-->(x+y+2)^2 <= 1 ( vì y^2 >=1)

--> -1 <= x+y+2 <=1

--> 2015 <= x+y+2018 <= 2017

hay 2015 <= Q , dau bang xay ra khi x+y+2=-1 --> x+y=-3

Q<=2017, dau bang xay ra khi  x+y+2=1 --> x+y=-1

Vậy giá trị nhỏ nhất của Q là 2015 khi x+y =-3

 giá trị lớn nhất của Q là 2017 khi x+y=-1

14 tháng 5 2020

giá trị lớn nhất là 2017

19 tháng 6 2021

Đặt A =  x2 + xy + y2 + 1 

\(x^2+2.x.\frac{1}{2}y+\frac{1}{4}y^2+\frac{3}{4}y^2+1=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1\ge1\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+\frac{1}{2}y=0\\y=0\end{cases}}\Rightarrow x=y=0\)

Vậy Min A = 1 <=> x = y = 0

9 tháng 3 2020

a) \(A=4x^2-12x+100=\left(2x\right)^2-12x+3^2+91=\left(2x-3\right)^2+91\)

Ta có: \(\left(2x-3\right)^2\ge0\forall x\inℤ\)

\(\Rightarrow\left(2x-3\right)^2+91\ge91\)

hay A \(\ge91\)

Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\)

<=> 2x-3=0

<=> 2x=3

<=> \(x=\frac{3}{2}\)

Vậy Min A=91 đạt được khi \(x=\frac{3}{2}\)

b) \(B=-x^2-x+1=-\left(x^2+x-1\right)=-\left(x^2+x+\frac{1}{4}-\frac{5}{4}\right)=-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

Ta có: \(-\left(x+\frac{1}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\le\frac{5}{4}\) hay B\(\le\frac{5}{4}\)

Dấu "=" \(\Leftrightarrow-\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x+\frac{1}{2}=0\)

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy Max B=\(\frac{5}{4}\)đạt được khi \(x=\frac{-1}{2}\)

9 tháng 3 2020

\(C=2x^2+2xy+y^2-2x+2y+2\)

\(C=x^2+2x\left(y-1\right)+\left(y-1\right)^2+x^2+1\)

\(\Leftrightarrow C=\left(x+y-1\right)^2+x^2+1\)

Ta có: 

\(\hept{\begin{cases}\left(x+y-1\right)^2\ge0\forall x;y\inℤ\\x^2\ge0\forall x\inℤ\end{cases}}\)

\(\Leftrightarrow\left(x+y-1\right)^2+x^2+1\ge1\)

hay C\(\ge\)1

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(x+y-1\right)^2=0\\x^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=1\\x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=1\\x=0\end{cases}}}\)

Vậy Min C=1 đạt được khi y=1 và x=0

14 tháng 8 2020

A = x2 + xy + y2 + 1

A = (x2 + xy + 1/4y2) + 3/4y2 + 1

A = (x + 1/2y)2 + 3/4y2 + 1 \(\ge\)1 với mọi x;y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x+\frac{1}{2}y=0\\\frac{3}{4}y=0\end{cases}}\) <=> \(\hept{\begin{cases}x=-\frac{1}{2}y\\y=0\end{cases}}\)<=> x = y = 0

Vậy MinA = 1 khi x = y = 0

14 tháng 8 2020

Ta có :

\(A=x^2+xy+y^2+1\)

\(=\left(x^2+xy+y^2\right)+1\)

\(=\left(x^2+2\cdot x\cdot\frac{1}{2}+\frac{y^2}{4}\right)+\frac{3y^2}{4}+1\)

\(=\left(x+\frac{y}{2}\right)^2+\frac{3y^2}{4}+1\ge1\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=0\)

Vậy \(A_{min}=1\) tại \(x=y=0\)

29 tháng 7 2016

 Có P = x^2 +y^2-xy-x+y+1 
=> 2A =2x^2 + 2y^2 -2xy -2x +2y+2 =(x^2 -2xy +y^2)+ (x^2 -2x+1) +(y^2 +2y +1) =(x-y)^2 +(x-1)^2 +(y+1)^2 >=0 
=> Min A =0 
Còn lại bạn tự giải nka!@

mk mới học lớp 6 nên chưa biết được nhiều nhak xin lỗi

5 tháng 2 2018

Ta có: \(P=x^2+y^2-xy-x+y+1\)

\(\Rightarrow4P=4x^2+4y-4xy-4x+4y+4\)

\(=\left(4x^2-4xy+y^2\right)-2\left(2x-y\right)+3y^2+2y+4\)

\(=\left(2x-y\right)^2-2\left(2x-y\right)+1+3\left(y^2+\frac{2}{3}y+\frac{1}{9}\right)+\frac{8}{3}\)

\(=\left[\left(2x-y\right)-1\right]^2+3\left(y+\frac{1}{3}\right)^2+\frac{8}{3}\)

\(=\left(2x-y-1\right)^2+3\left(y+\frac{1}{3}\right)^2+\frac{8}{3}\)

Vậy min4P = \(\frac{8}{3}\Rightarrow minP=\frac{2}{3}\)

\(P_{min}=\frac{2}{3}\Leftrightarrow\hept{\begin{cases}y+\frac{1}{3}=0\\2x-y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=\frac{-1}{3}\\x=\frac{1}{3}\end{cases}}\)