Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2012p=2012(x^2-2x+2012)/x^2
2012p=(2012x^2-2.2012.x+2012^2)/x^2
2012p=(2011x^2+(x^2-2.2012.x+2012^2))/x^2
2012p=2011+(x-2012)^2/x^2 >=2011
suy ra GTNN của 2012p là 2011
GTNN của p là 2011/2012
xảy ra khi x=2012
\(A=\frac{x^2-2x+2007}{2007x^2},\left(x\ne0\right)\)
\(A=\frac{2007x^2-2x.2007+2007^2}{2007x^2}=\frac{x^2-2x.2007+2007^2}{2007x^2}+\frac{2006x^2}{2007x^2}=\) \(\frac{\left(x-2007\right)^2}{2007x^2}+\frac{2006}{2007}\ge\frac{2006}{2007}\)
\(A_{min}=\frac{2006}{2007}\) khi \(x-2007=0\) hay \(x=2007\)
Chúc bạn học tốt !!!
bài này ta có thể giải theo 2 cách
ta có A = \(\frac{x^2-2x+2011}{x^2}\)
= \(\frac{x^2}{x^2}\)- \(\frac{2x}{x^2}\)+ \(\frac{2011}{x^2}\)
= 1 - \(\frac{2}{x}\)+ \(\frac{2011}{x^2}\)
đặt \(\frac{1}{x}\)= y ta có
A= 1- 2y + 2011y^2
cách 1 :
A = 2011y^2 - 2y + 1
= 2011 ( y^2 - \(\frac{2}{2011}y\)+ \(\frac{1}{2011}\))
= 2011( y^2 - 2.y.\(\frac{1}{2011}\)+ \(\frac{1}{2011^2}\)- \(\frac{1}{2011^2}\) + \(\frac{1}{2011}\))
= 2011 \(\left(\left(y-\frac{1}{2011}\right)^2\right)+\frac{2010}{2011^2}\)
= 2011\(\left(y-\frac{1}{2011}\right)^2\)+ \(\frac{2010}{2011}\)
vì ( y - \(\frac{1}{2011}\)) 2>=0
=> 2011\(\left(y-\frac{1}{2011}\right)^2\)+ \(\frac{2010}{2011}\)> = \(\frac{2010}{2011}\)
hay A >=\(\frac{2010}{2011}\)
cách 2
A = 2011y^2 - 2y + 1
= ( \(\sqrt{2011y^2}\)) - 2 . \(\sqrt{2011y}\). \(\frac{1}{\sqrt{2011}}\)+ \(\frac{1}{2011}\)+ \(\frac{2010}{2011}\)
= \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)+ \(\frac{2010}{2011}\)
vì \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)> =0
nên \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)+ \(\frac{2010}{2011}\)>= \(\frac{2010}{2011}\)
hay A >= \(\frac{2010}{2011}\)
A = \(\dfrac{x^2-2x+2020}{2021x^2}\)
= \(\dfrac{2020x^2-2.2020.x+2020^2}{2021.2020x^2}\)
\(=\dfrac{2019x^2}{2021.2020x^2}+\dfrac{x^2-2.2020.x+2020^2}{2021.2020x^2}\)
= \(\dfrac{2019}{2021.2020}+\dfrac{\left(x-2020\right)^2}{2021.2020x^2}\ge\dfrac{2019}{2021.2020}\)
Dấu "=" xảy ra <=> x - 2020 = 0
<=> x = 2020
Vậy minA = \(\dfrac{2019}{2021.2020}\)đạt được tại x = 2020
áp dụng BĐT côsi ta có : \(\frac{x^2}{y^2}+\frac{y^2}{x^2}>=2\sqrt{\frac{x^2}{y^2}\cdot\frac{y^2}{x^2}}=2;\frac{x}{y}+\frac{y}{x}>=2\)
=> B>= 2-3*2+5=1
Dấu bằng khi x=y=1
\(A=\frac{x^2-x+2}{x^2}\)
\(A=\frac{x^2}{x^2}-\frac{x}{x^2}+\frac{2}{x^2}\)
\(A=1-\frac{1}{x}+2\cdot\left(\frac{1}{x}\right)^2\)
Đặt \(\frac{1}{x}=a\)
\(A=1-a+2a^2\)
\(A=2\left(a^2-\frac{a}{2}+\frac{1}{2}\right)\)
\(A=2\left(a^2-2\cdot a\cdot\frac{1}{4}+\frac{1}{16}+\frac{7}{16}\right)\)
\(A=2\left[\left(a-\frac{1}{4}\right)^2+\frac{7}{16}\right]\)
\(A=2\left(a-\frac{1}{4}\right)^2+\frac{7}{8}\ge\frac{7}{8}\forall a\)
Dấu "=" xảy ra \(\Leftrightarrow a=\frac{1}{4}\Leftrightarrow\frac{1}{x}=\frac{1}{4}\Leftrightarrow x=4\)