K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2019

\(A=\frac{x^2-x+2}{x^2}\)

\(A=\frac{x^2}{x^2}-\frac{x}{x^2}+\frac{2}{x^2}\)

\(A=1-\frac{1}{x}+2\cdot\left(\frac{1}{x}\right)^2\)

Đặt \(\frac{1}{x}=a\)

\(A=1-a+2a^2\)

\(A=2\left(a^2-\frac{a}{2}+\frac{1}{2}\right)\)

\(A=2\left(a^2-2\cdot a\cdot\frac{1}{4}+\frac{1}{16}+\frac{7}{16}\right)\)

\(A=2\left[\left(a-\frac{1}{4}\right)^2+\frac{7}{16}\right]\)

\(A=2\left(a-\frac{1}{4}\right)^2+\frac{7}{8}\ge\frac{7}{8}\forall a\)

Dấu "=" xảy ra \(\Leftrightarrow a=\frac{1}{4}\Leftrightarrow\frac{1}{x}=\frac{1}{4}\Leftrightarrow x=4\)

29 tháng 3 2017

2012p=2012(x^2-2x+2012)/x^2

2012p=(2012x^2-2.2012.x+2012^2)/x^2

2012p=(2011x^2+(x^2-2.2012.x+2012^2))/x^2

2012p=2011+(x-2012)^2/x^2 >=2011

suy ra GTNN của 2012p là 2011

GTNN của p là 2011/2012

xảy ra khi x=2012

25 tháng 7 2018

Ai giúp mik vs

25 tháng 7 2018

Huhu ai giúp vs

14 tháng 2 2017

có lẽ =1

14 tháng 2 2017

à nhầm 2016/2017

13 tháng 9 2019

\(A=\frac{x^2-2x+2007}{2007x^2},\left(x\ne0\right)\)

\(A=\frac{2007x^2-2x.2007+2007^2}{2007x^2}=\frac{x^2-2x.2007+2007^2}{2007x^2}+\frac{2006x^2}{2007x^2}=\) \(\frac{\left(x-2007\right)^2}{2007x^2}+\frac{2006}{2007}\ge\frac{2006}{2007}\)

\(A_{min}=\frac{2006}{2007}\) khi \(x-2007=0\) hay \(x=2007\)

Chúc bạn học tốt !!!

6 tháng 2 2017

bài này ta có thể giải theo 2 cách 

ta có A = \(\frac{x^2-2x+2011}{x^2}\)

\(\frac{x^2}{x^2}\)\(\frac{2x}{x^2}\)\(\frac{2011}{x^2}\)

= 1 - \(\frac{2}{x}\)\(\frac{2011}{x^2}\)

đặt \(\frac{1}{x}\)= y ta có 

A= 1- 2y + 2011y^2 

cách 1 : 

A = 2011y^2 - 2y + 1 

= 2011 ( y^2 - \(\frac{2}{2011}y\)\(\frac{1}{2011}\)

= 2011( y^2 - 2.y.\(\frac{1}{2011}\)\(\frac{1}{2011^2}\)\(\frac{1}{2011^2}\) + \(\frac{1}{2011}\)

= 2011 \(\left(\left(y-\frac{1}{2011}\right)^2\right)+\frac{2010}{2011^2}\)

= 2011\(\left(y-\frac{1}{2011}\right)^2\)\(\frac{2010}{2011}\)

vì ( y - \(\frac{1}{2011}\)2>=0 

=> 2011\(\left(y-\frac{1}{2011}\right)^2\)\(\frac{2010}{2011}\)> = \(\frac{2010}{2011}\)

hay A >=\(\frac{2010}{2011}\)

cách 2  

A = 2011y^2 - 2y + 1 

= ( \(\sqrt{2011y^2}\)) - 2 . \(\sqrt{2011y}\)\(\frac{1}{\sqrt{2011}}\)\(\frac{1}{2011}\)\(\frac{2010}{2011}\)

\(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)\(\frac{2010}{2011}\)

vì \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)> =0 

nên \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)\(\frac{2010}{2011}\)>= \(\frac{2010}{2011}\)

hay A >= \(\frac{2010}{2011}\)

16 tháng 3 2023

A = \(\dfrac{x^2-2x+2020}{2021x^2}\)

\(\dfrac{2020x^2-2.2020.x+2020^2}{2021.2020x^2}\)

\(=\dfrac{2019x^2}{2021.2020x^2}+\dfrac{x^2-2.2020.x+2020^2}{2021.2020x^2}\)

\(\dfrac{2019}{2021.2020}+\dfrac{\left(x-2020\right)^2}{2021.2020x^2}\ge\dfrac{2019}{2021.2020}\)

Dấu "=" xảy ra <=> x - 2020 = 0

                       <=> x = 2020

Vậy minA = \(\dfrac{2019}{2021.2020}\)đạt được tại x = 2020

28 tháng 4 2016

áp dụng BĐT côsi ta có : \(\frac{x^2}{y^2}+\frac{y^2}{x^2}>=2\sqrt{\frac{x^2}{y^2}\cdot\frac{y^2}{x^2}}=2;\frac{x}{y}+\frac{y}{x}>=2\)

=> B>= 2-3*2+5=1

Dấu bằng khi x=y=1