Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giá trị lớn nhất:
a) A=1
b) B=2015
Giá trị nhỏ nhất:
a) A=-1
b) B=-2
A = (x - 5)2 + |3y - 6| - 3
Ta có
\(\hept{\begin{cases}\left(x-5\right)^2\ge0\\\left|3x-6\right|\ge0\end{cases}\forall x;y}\)
<=> (x - 5)2 + |3y - 6| \(\ge\) 0 \(\forall\) x ; y
<=> A = (x - 5)2 + |3y - 6| - 3 \(\ge\) 0 \(\forall\)x;y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x-5\right)^2=0\\\left|3y-6\right|=0\end{cases}}\)
<=> \(\hept{\begin{cases}x-5=0\\3y-6=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=5\\3x=6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=5\\y=2\end{cases}}\)
Vậy Min A = - 3 <=> x =5 và y = 2
Học tốt
1,
xy + y + x = 6
<=> y(x + 1) + (x + 1) = 7
<=> (x + 1)(y + 1) = 7
Vì x,y thuộc N nên x+1, y+1 thuộc N => x+1 và y+1 thuộc Ư(7) = {1;7}
Ta có bảng:
x+1 | 1 | 7 |
y+1 | 7 | 1 |
x | 0 | 6 |
y | 6 | 0 |
2,
a, Vì \(\left(x-2\right)^2\ge0\Rightarrow-\left(x-2\right)^2\le0\Rightarrow A=5-\left(x-2\right)^2\le5\)
Dấu "=" xảy ra khi (x-2)2 = 0 => x = 2
Vậy GTLN của A là 5 khi x = 2
b, Vì \(\hept{\begin{cases}3\left|x-2\right|\ge0\\\left|y-1\right|\ge0\end{cases}}\)
\(\Rightarrow3\left|x-2\right|+\left|y-1\right|\ge0\)
\(\Rightarrow B=3\left|x-2\right|+\left|y-1\right|+7\ge7\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}3\left|x-2\right|=0\\\left|y-1\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}}\)
Vậy GTNN của B = 7 khi x=2,y=1
Ta có : \(x^2\ge0;y^2\ge0\)
\(\Rightarrow x^2+y^2+2013\ge2013\)
\(MinA=2013\Leftrightarrow\hept{\begin{cases}x=0\\y=0\end{cases}}\)
Áp dụng BĐT Bunhiacopxki:
\(36=\left(1.\sqrt{4}.x+1.y\right)^2\le\left(1^2+1^2\right)\)\(\left(4x^2+y^2\right)\)
\(\Rightarrow4x^2\)\(+y^2\) \(\ge\frac{36}{2}=18\)
Suy ra Min A = 18 <=> \(\begin{cases}y=2x\\2x+y=6\end{cases}\) \(\Leftrightarrow\begin{cases}x=\frac{3}{2}\\x=3\end{cases}\)
a) Ta có: x2 > 0 và |y - 2| > 0 => ( x2 + |y - 2| ) > 0 => ( x2 + |y - 2| ) + 3 \(\ge\) 0 + 3
=> A đạt giá trị nhỏ nhất = 3
b) T có: |3y - 6| > 0 và |y + 1| > 0 => |3y - 6| + 2 . |y + 1| > 0 => (|3y - 6| + 2 . |y + 1|) - 2015 \(\ge\) 0 - 2015
=> B đạt giá trị nhỏ nhất = - 2015