K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2018

\(A=\left|x+2\right|+\left|x+3\right|+\left|x-4\right|+\left|x-5\right|\)

ta có :

\(\left|x+2\right|\ge0\)

\(\left|x+3\right|\ge0\)

\(\left|x-4\right|\ge0\)

\(\left|x-5\right|\ge0\)

nên :

\(\left|x+2\right|+\left|x+3\right|+\left|x-4\right|+\left|x-5\right|\ge0\)

dấu "=" xảy ra khi :

\(\left|x+2\right|+\left|x+3\right|+\left|x-4\right|+\left|x-5\right|=0\)

\(\Rightarrow x+2+x+3+x-4+x-5=0\)

\(\Rightarrow4x-3=0\)

\(\Rightarrow4x-3\)

\(\Rightarrow x=\frac{3}{4}\)

vậy Amin = 0 khi x = 3/4

phần b bn làm tương tự

6 tháng 8 2018

Thanks

14 tháng 7 2016

Ta có :

\(\left|3,4-x\right|\ge0\) với  V  x

\(\Rightarrow\left|3,4-x\right|+5\ge5\)với  V  x

\(\Rightarrow A\ge5\)với  V  x

\(\Rightarrow GTNN\)của \(A=5\) 

Dấu bằng xảy ra khi :

\(\left|3,4-x\right|=0\)

\(\Rightarrow3,4-x=0\)

\(\Rightarrow x=3,4\)

26 tháng 6 2016

\(A=\left|x-1\right|+\left|x-2\right|\)

  • x<1: \(A=1-x+2-x=3-2x>3-2\cdot1=1\)(1)
  • 1<= x < 2: \(A=x-1+2-x=1\)(2)
  • x>=2: \(A=x-1+x-2=2x-3\ge2\cdot2-3=1\). Dấu "=" khi x = 2. (3)

Từ (1); (2); (3) => GTNN của A bằng 1 khi \(1\le x\le2\)

26 tháng 6 2016

Ta có Ix-1I \(\ge\) 0  và Ix-2I \(\ge\) 0

=> A= Ix-1I + Ix-2I \(\ge\) 0

=> Giá trị nhỏ nhất của A=0 khi x-1=0 => x=1

15 tháng 2 2016

|x-2001|+|x-1|=|x-2001|+|1-x|

BĐT gttđ:|a+b| > |a+b|

áp dụng:=>|x-2001|+|1-x| > |(x-2001)+(1-x)|=2000

=>Amin=2000

dấu "=" xảy ra<=>(x-2001)(x-1)>0 tức 1<x<2000

27 tháng 8 2016

A=|x+5|+2-x 

\(\hept{\begin{cases}x+5=0\\2-x=0\end{cases}}\Rightarrow x=\hept{\begin{cases}=-5\\2\end{cases}}\)

Vậy x =  -5 

x = 2 

A) Viết dạng không chứa dấu giá trị tuyệt đối là : 

x + 5 = 2 - x 

b) Giá trị nhỏ nhất của A là : 

| - 5 + 5 | = 2 - 2

= | 0 | = 0

=> = 0  

30 tháng 8 2016

Cho góc bẹt AOB, trên cùng nửa mặt phẳng bờ AB. Vẽ OD và OC sao cho góc AOC = 60 độ. Góc BOD = 1/2 góc AOC. Chứng tỏ rằng 2 tia OC và OD vuông góc.