K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2018

\(P=x^{2}+y^{2}+\frac{1}{(4-\frac{1}{x}-\frac{1}{y})^{2}}\geq x^{2}+1+\frac{1}{(3-\frac{1}{x})^{2}}=x^{2}+1+\frac{x^{2}}{(3x-1)^{2}}\) ( do \(y\geq 1)\)

\(x> \frac{1}{3}=>3x-1> 0 \)

Áp dụng bất đẳng thức Cô-si cho 2 số dương: 

\(x^{2}+\frac{x^{2}}{4(3x-1)^{2}}\geq 2\sqrt{x^{2}.\frac{x^{2}}{4(3x-1)^{2}}}=\frac{x^{2}}{3x-1}\)

Ta cm: \(\frac{x^{2}}{3x-1}\geq \frac{1}{2}<=>2x^{2}\geq 3x-1<=>(x-1)(2x-1)\geq 0\) đúng do \(\frac{1}{3}< x\leq \frac{1}{2}\)

\(1+\frac{3x^{2}}{4(3x-1)^{2}}=\frac{1}{4}+\frac{3}{4}(1+\frac{x^{2}}{(3x-1)^{2}})\geq \frac{1}{4}+\frac{3}{4}.2.\frac{x}{3x-1}\geq \frac{1}{4}+\frac{3}{4}.2=\frac{7}{4}\)

Do \(\frac{x}{3x-1}=\frac{1}{3}.\frac{3x}{3x-1}=\frac{1}{3}(1+\frac{1}{3x-1})\geq \frac{1}{3}(1+\frac{1}{\frac{3}{2}-1})=1\)

\(<=>y=1,x=\frac{1}{2}\)

Phù ~ THỞ PHÀO NHẸ NHÕM

16 tháng 9 2020

Ta có : \(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{2^2}{2}=2\)

\(\Rightarrow4\left(x^2+y^2\right)\ge8\)

Lại có : \(xy\le\frac{\left(x+y\right)^2}{4}\Rightarrow\frac{1}{xy}\ge\frac{4}{\left(x+y\right)^2}=\frac{4}{2^2}=1\)

Do đó : \(P=4\left(x^2+y^2\right)+\frac{1}{xy}\ge8+1=9\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=1\)

30 tháng 4 2020

sol của tớ :3

Nếu y=0 thì x2=1 => P=2

Nếu y\(\ne\)0 .Đặt \(t=\frac{x}{y}\)

\(P=\frac{2\left(x^2+6xy\right)}{1+2xy+2y^2}=\frac{2\left(x^2+6xy\right)}{x^2+2xy+3y^2}=\frac{2\left[\left(\frac{x}{y}\right)^2+6\cdot\frac{x}{y}\right]}{\left(\frac{x}{y}\right)^2+2\frac{x}{y}+3}=\frac{2\left(t^2+6t\right)}{t^2+2t+3}\)

\(\Rightarrow P.t^2+2P\cdot t+3P=2t^2+12t\)

\(\Leftrightarrow t^2\left(P-2\right)+2t\left(P-6\right)+3P=0\)

Xét \(\Delta'=\left(P-2\right)^2-3P\left(P-6\right)=-2P^2-6P+36\ge0\)

\(\Leftrightarrow-6\le P\le3\)

Dấu bằng xảy ra khi:

Max:\(x=\frac{3}{\sqrt{10}};y=\frac{1}{\sqrt{10}}\left(h\right)x=\frac{3}{-\sqrt{10}};y=\frac{1}{-\sqrt{10}}\)

Min:\(x=\frac{3}{\sqrt{13}};y=-\frac{2}{\sqrt{13}}\left(h\right)x=-\frac{3}{\sqrt{13}};y=\frac{2}{\sqrt{13}}\)

21 tháng 9 2019

khó ha

NV
1 tháng 10 2019

\(H\ge\frac{\left(x+y\right)^2}{2xy\left(x+y^3\right)}+\frac{\left(y+z\right)^2}{2yz\left(y+z\right)}+\frac{\left(z+x\right)^2}{2zx\left(z+x\right)}=\frac{1}{2xy\left(x+y\right)}+\frac{1}{2yz\left(y+z\right)}+\frac{1}{2zx\left(z+x\right)}\)

\(\Rightarrow H\ge\frac{9}{2}.\frac{1}{xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)}\)

Ta chứng minh BĐT phụ sau:

\(x^3+y^3\ge xy\left(x+y\right)\)

\(\Leftrightarrow x^3-x^2y+y^3-xy^2\ge0\)

\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\) (luôn đúng)

Vậy BĐT phụ được chứng minh

Hoàn toàn tương tự: \(y^3+z^3\ge yz\left(y+z\right)\); \(z^3+x^3\ge zx\left(z+x\right)\)

\(\Rightarrow H\ge\frac{9}{2}.\frac{1}{x^3+y^3+y^3+z^3+z^3+x^3}=\frac{9}{4\left(x^3+y^3+z^3\right)}=\frac{9}{32}\)

\(H_{min}=\frac{9}{32}\) khi \(x=y=z=\frac{2\sqrt{3}}{3}\)

1 tháng 10 2019

cái dấu = đầu tiên em ko hiểu lắm,