Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P = x4.y4 + x4 + y4 + 1
Ta có: x2 + y2 = (x + y)2 - 2xy = 10 - 2xy => x4 + y4 = (x2 + y2)2 - 2x2y2 = (10 - 2xy)2 - 2(xy)2 = 100 - 40xy + 2(xy)2
=> P = (xy)4 + 2(xy)2 - 40xy + 101 = [(xy)4 - 8(xy)2 + 16] + 10.[(xy)2 - 4xy + 4] + 45 = [(xy)2 - 4]2 + 10.(xy - 2)2 + 45
=> P > 45
Dấu "=" xảy ra <=> xy = 2
Mà có x + y = \(\sqrt{10}\) => x = \(\sqrt{10}\) - y => xy = \(\sqrt{10}\)y - y2 = 2 => y2 - \(\sqrt{10}\).y + 2 = 0
\(\Delta\) = 10 - 8 = 2 => \(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)=> x = \(\frac{4}{\sqrt{10}+\sqrt{2}}=\frac{\sqrt{10}-\sqrt{2}}{2}\)
vậy P nhỏ nhất bằng 45 khi x = \(\frac{\sqrt{10}-\sqrt{2}}{2}\); \(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)
P = x4.y4 + x4 + y4 + 1
Ta có: x2 + y2 = (x + y)2 - 2xy = 10 - 2xy => x4 + y4 = (x2 + y2)2 - 2x2y2 = (10 - 2xy)2 - 2(xy)2 = 100 - 40xy + 2(xy)2
=> P = (xy)4 + 2(xy)2 - 40xy + 101 = [(xy)4 - 8(xy)2 + 16] + 10.[(xy)2 - 4xy + 4] + 45 = [(xy)2 - 4]2 + 10.(xy - 2)2 + 45
=> P > 45
Dấu "=" xảy ra <=> xy = 2
Mà có x + y = \(\sqrt{10}\) => x = \(\sqrt{10}\) - y => xy = \(\sqrt{10}\)y - y2 = 2 => y2 - \(\sqrt{10}\).y + 2 = 0
\(\Delta\) = 10 - 8 = 2 => \(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)=> x = \(\frac{4}{\sqrt{10}+\sqrt{2}}=\frac{\sqrt{10}-\sqrt{2}}{2}\)
vậy P nhỏ nhất bằng 45 khi x = \(\frac{\sqrt{10}-\sqrt{2}}{2}\); \(y=\frac{\sqrt{10}+\sqrt{2}}{2}\)
Áp dụng bất đẳng thức Bunhiacopxki ta có: (x+ y)2 \(\le\) (x2 + y2) .(12 + 12) => 4 \(\le\) 2.S => 2 \(\le\) S
Dấu "=" xảy ra <=> x = y = 1
Vậy GTNN của S là 2 tại x = y = 1
Áp dụng bất đẳng thức Bu nhi a cốp xki ta có:
\(\left(x^2+y^2\right)\left(1+1\right)\ge\left(x\cdot1+y\cdot1\right)^2\)
\(\Leftrightarrow\)\(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Leftrightarrow\)\(2\left(x^2+y^2\right)\ge2^2\)
\(\Leftrightarrow\)\(x^2+y^2\ge\frac{4}{2}\)\(\Leftrightarrow\)\(x^2+y^2\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow\) x=y=1
Vậy \(\left(x^2+y^2\right)min=2\Leftrightarrow x=y=1\)
\(x^2+x+2=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{7}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)
\(x^2+2\ge2\)
Gọi : \(\frac{x^2+2}{x^2+x+2}=A\)
\(\Rightarrow A_{max}=2:\frac{7}{4}=\frac{8}{7}\)
2.M = 2x2 – 10x + 2y2 + 2xy – 8y + 4038 = (x2 – 10x + 25) +( y2 + 2xy + y2) + ( y2 – 8y + 16) + 3997
= (x-5)2 + (x+y)2 + (y - 4)2 + 3997 = N + 3997
Áp dụng bất đẳng thức Bu- nhi a: (ax+ by + cz)2 \(\le\) (a2+ b2 + c2). (x2 + y2 + z2). Dấu bằng xảy ra khi a/x = b/y = c/z
Ta có: [(5 - x).1 + (x+ y).1 + (y + 4).1]2 \(\le\) [(5 - x)2 + (x+y)2 + (y - 4)2 ].(1+ 1+1) = N .3 = 3.N
<=> 92 = 81 \(\le\) 3.N => N \(\ge\) 27 => 2.M \(\ge\) 27 + 3997 = 4024
=> M \(\ge\)2012
vậy Min M = 2012
khi 5 - x = x+ y = y + 4 => x = 4 ; y = -3
Áp dụng BĐT Bun hia côp xki với 2 dãy số: x;y và 1;1
Ta có: \(\left(x^2+y^2\right)\left(1+1\right)\ge\left(x.1+y.1\right)^2\)
\(2\left(x^2+y^2\right)\ge2^2\)
\(x^2+y^2\ge2\)
\(S\ge2\)
Vậy GTNN của S là bằng 2 <=> \(\frac{x}{1}=\frac{y}{1}< =>x=y\)
x2 + y2 \(\ge2xy\)
<=> 2(x2 + y2)\(\ge\)(x + y)2 = 4
<=> A = x2 + y2 \(\ge2\)
Đạt được khi x = y = 1
\(B=\dfrac{x^4+2016x^2+4028}{x^2+2}\)
\(=\dfrac{x^4+2x^2+2014x^2+4028}{x^2+2}\)
\(=x^2+2014>=2014\forall x\)
Dấu '=' xảy ra khi x=0