Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK: \(x\ge0\)
+) Với x = 0 => A = 0
+) Với x khác 0
Ta có: \(\frac{1}{A}=\frac{3}{4}\sqrt{x}-\frac{3}{4}+\frac{3}{4\sqrt{x}}=\frac{3}{4}\left(\sqrt{x}+\frac{1}{\sqrt{x}}\right)-\frac{3}{4}\ge\frac{3}{4}.2-\frac{3}{4}=\frac{3}{4}\)
=> \(A\le\frac{4}{3}\)
Dấu "=" xảy ra <=> \(\sqrt{x}=\frac{1}{\sqrt{x}}\)<=> x = 1
Vậy max A = 4/3 tại x = 1
Còn có 1 cách em quy đồng hai vế giải đenta theo A thì sẽ tìm đc cả GTNN và GTLN
P = \(\left[x+2sprt\left(x\right)+5\right]\backslash\left[sprt\left(x\right)+1\right] \) là sao bn
\(A=\frac{2a-3\sqrt{a}-2}{\sqrt{a}-2}\\ =\frac{2a-4\sqrt{a}+\sqrt{a}-2}{\sqrt{a}-2}\\ =\frac{\left(2\sqrt{a}+1\right)\left(\sqrt{a}-2\right)}{\sqrt{a}-2}\\ =2\sqrt{a}+1\)
\(1)\) Ta có :
\(M=\sqrt{x^2+2x+1}+\sqrt{x^2-2x+1}\)
\(M=\sqrt{\left(x+1\right)^2}+\sqrt{\left(x-1\right)^2}\)
\(M=\left|x+1\right|+\left|x-1\right|\)
\(M=\left|x+1\right|+\left|1-x\right|\ge\left|x+1+1-x\right|=\left|2\right|=2\)
Dấu "=" xảy ra khi và chỉ khi \(\left(x+1\right)\left(1-x\right)\ge0\)
Trường hợp 1 :
\(\hept{\begin{cases}x+1\ge0\\1-x\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\le1\end{cases}\Leftrightarrow}-1\le x\le1}\)
Trường hợp 2 :
\(\hept{\begin{cases}x+1\le0\\1-x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le-1\\x\ge1\end{cases}}}\) ( loại )
Vậy GTNN của \(M\) là \(2\) khi \(-1\le x\le1\)
Chúc bạn học tốt ~
b,ta co x^2+y^2=1
=>x^2=1-y^2
y^2=1-x^2
ta co
\(\sqrt{x^4+4\left(1-x^2\right)}\)+\(\sqrt{y^4+4\left(1-y^2\right)}\)
=\(\sqrt{\left(x^2-2\right)^2}\)+\(\sqrt{\left(y^2-2\right)^2}\)
còn lại bạn xét các trường hợp của x^2-2 và y^2-2 là ra
ĐKXĐ: x>=-1
\(A=x-2\sqrt{x+1}+30\)
\(=x+1-2\sqrt{x+1}+1+28\)
\(=\left(\sqrt{x+1}-1\right)^2+28>=28\forall x\) thỏa mãn ĐKXĐ
Dấu '=' xảy ra khi \(\sqrt{x+1}-1=0\)
=>\(\sqrt{x+1}=1\)
=>x+1=1
=>x=0