Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, B=x2+4xy+y2+x2-8x+16+2012
B=(x+y) 2+(x-4)2+2012
Vậy B >=2012 ( Dấu "=" xảy ra khi x=4,y=-4)
b làm tương tự
c, 9x2+6x+1+y2-4y+4+x2-4xz+4z2=0
(3x+1)2+(y-4)2+(x-2z)2=0
Vậy 3x+1=0 => x = -1/3
y-4=0 => y=4
x-2z=0 thế x=-1/3 ta được. -1/3-2z=0 => z = -1/6
Bạn nhớ ghi lại đề minh không ghi đề
a) \(B=2x^2+y^2+2xy-8x+2028\)
\(=\left(x^2+2xy+y^2\right)+\left(x^2-8x+4^2\right)+2012=\left(x+y\right)^2+\left(x-4\right)^2+2012\ge2012\)
\(MinB=2012\Leftrightarrow\hept{\begin{cases}x=4\\y=-4\end{cases}}\)
b)\(C=x^2+5y^2+4xy+2x+2y-7\)
\(=\left(x^2+4xy+4y^2\right)+\left(2x+4y\right)+1+\left(y^2-2y+1\right)-9\)
\(=\left(\left(x+2y\right)^2+2\left(x+2y\right)+1\right)+\left(y-1\right)^2-9=\left(x+2y+1\right)^2+\left(y-1\right)^2-9\ge9\)
\(MinC=-9\Leftrightarrow\hept{\begin{cases}x+2y+1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
c)\(10x^2+y^2+4z^2+6x-4y-4xz+5=0\)
\(\Leftrightarrow\left(9x^2+6x+1\right)+\left(y^2-4y+4\right)+\left(x^2-4xz+4z^2\right)=0\)
\(\Leftrightarrow\left(3x+1\right)^2+\left(y-2\right)^2+\left(x-2z\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}3x+1=0\\y-2=0\\x-2z=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{1}{3}\\y=2\\z=-\frac{1}{6}\end{cases}}\)
\(A=x-x^2=-\left(x^2-2\times x\times\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\right)=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\)
\(\left(x-\frac{1}{2}\right)^2\ge0\)
\(\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
\(-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\le\frac{1}{4}\)
Vậy Max A = \(\frac{1}{4}\) khi x = \(\frac{1}{2}\)
***
\(B=5-8x-x^2=-\left(x^2+2\times x\times4+4^2-4^2-5\right)=-\left[\left(x+4\right)^2-21\right]\)
\(\left(x+4\right)^2\ge0\)
\(\left(x+4\right)^2-21\ge-21\)
\(-\left[\left(x+4\right)^2-21\right]\le21\)
Vậy Max B = 21 khi x = - 4
***
\(C=5-x^2+2x-4y^2-4y=-\left(x^2-2\times x\times1+1^2-1^2+\left(2y\right)^2-2\times2y\times1+1^2-1^2-5\right)=-\left[\left(x-1\right)^2+\left(2y-1\right)^2-7\right]\)
\(\left(x-1\right)^2\ge0\)
\(\left(2y-1\right)^2\ge0\)
\(\left(x-1\right)^2+\left(2y-1\right)^2-7\ge-7\)
\(-\left[\left(x-1\right)^2+\left(2y-1\right)^2-7\right]\le7\)
Vậy Max C = 7 khi x = 1 và y = \(\frac{1}{2}\)
\(A=x^2-8x+16+x^2+4xy+4y^2+y^2+4y+4+2004\)
\(=\left(x-4\right)^2+\left(x+2y\right)^2+\left(y+2\right)^2+2004\ge2004\)
Dấu ''='' xảy ra khi x = 4 ; y = -2
F = 5x2 + 2y2 + 4xy - 2x + 4y + 8
F = ( 4x2 + 4xy + y2 ) + ( x2 - 2x + 1 ) + ( y2 + 4y + 4 ) + 3
F = ( 2x + y )2 + ( x - 1 )2 + ( y + 2 )2 + 3
\(\hept{\begin{cases}\left(2x+y\right)^2\\\left(x-1\right)^2\\\left(y+2\right)^2\end{cases}}\ge0\forall x,y\Rightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+3\ge3\forall x,y\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}2x+y=0\\x-1=0\\y+2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Vậy MinF = 3 <=> x = 1 , y = -2
G = 5x2 + 5y2 + 8xy + 2y + 2020
= x2 + ( 4x2 + 8xy + 4y2 ) + ( y2 + 2y + 1 ) + 2019
= x2 + ( 2x + 2y )2 + ( y + 1 )2 + 2019
\(\hept{\begin{cases}x^2\\\left(2x+2y\right)^2\\\left(y+1\right)^2\end{cases}}\ge0\forall x,y\Rightarrow x^2+\left(2x+2y\right)^2+\left(y+1\right)^2+2019\ge2019\forall x,y\)
Tuy nhiên đẳng thức không xảy ra :P
Ta có:
\(C=2x^2+3y^2+4xy-8x-2y+18\)
\(C=2\left(x^2+2xy+y^2\right)+y^2-8x-2y+18\)
\(C=2[\left(x+y\right)^2-4\left(x+y\right)+4]+\left(y^2+6y+9\right)+1\)
\(C=2\left(x+y-2\right)^2+\left(y+3\right)^2+1\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow x+y=2\)và \(y=-3\)
Hay x = 5 , y = -3
biet tong cua so thu nhat va so thu hai bang 5,8.Tong cua so thu hai va so thu ba bang 6,7.Tong so thu nhat va so thu ba bang 7,5.Tim moi so do?
\(P=8x^2+2y^2+4xy-2x+4y+2015=2\cdot\left(y^2+2xy+2y+4x^2-x\right)+2015\)
\(=2\cdot\left(y^2+2y\left(x+1\right)+\left(x+1\right)^2-\left(x+1\right)^2+4x^2-x\right)+2015\)
\(=2\cdot\left[\left(y+\left(x+1\right)\right)^2+3x^2-3x-1\right]+2015\)
\(=2\cdot\left[\left(y+x+1\right)^2+3\left(x^2-2x\cdot\frac{1}{2}+\frac{1}{4}\right)-1-\frac{3}{4}\right]+2015\)
\(=2\cdot\left[\left(y+x+1\right)^2+3\cdot\left(x-\frac{1}{2}\right)^2\right]+2015-\frac{7}{2}\)
\(=2\cdot\left(x+y+1\right)^2+6\left(x-\frac{1}{2}\right)^2+2011\frac{1}{2}\)
Vậy GTNN của P = 2011,5. Xảy ra khi x=0,5 và y=-1,5.