Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = (x2 - 16) + |y - 3| - 2
B = x2 - 16 - 2 + |y + 3|
B = x2 - 18 + |y + 3|
Ta có :
x2 \(\ge0\)
|y + 3| \(\ge0\)
=> x2 + |y + 3| \(\ge0\)
=> x2 - 16 + |y + 3| \(\le16\)
\(\Leftrightarrow\hept{\begin{cases}x^2=0\\\left|y+3\right|=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}}\)
Ta có: \(x^2\ge0\Rightarrow x^2-16\ge-16\)
Mà \(\left|y-3\right|\ge0\)
\(\Rightarrow\left(x^2-16\right)+\left|y-3\right|\ge-16\)
\(\Rightarrow B=\left(x^2-16\right)+\left|y-3\right|-2\ge-18\)
Dấu " = " khi \(\hept{\begin{cases}x^2-16=0\\y-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=4;x=-4\\y=3\end{cases}}\)
Vậy MIN B = -18 khi x = -4 hoặc x = 4 và y = 3
\(A=|x-12|+|y+9|+1997\)
Để A nhỏ nhất thì |x-12| và |y+9| nhỏ nhất
Ta thấy |x-12| và |y+9| \(\ge\)0 \(\Rightarrow\)|x-12| = |y+9| = 0
\(\Rightarrow\)x = 12 và y = -9
\(B=\left(x^2-16\right)+|y-3|-2\)
Để B nhỏ nhất thì x2 - 16 và |y-3| nhỏ nhất.
Ta thấy x2 và |y-3| \(\ge\)0 \(\Rightarrow\)x2 = y-3 = 0
\(\Rightarrow x=0\) và y = 3
\(C=\dfrac{5x-19}{x-4}\Leftrightarrow\dfrac{5x-5\times4+1}{x-4}\Leftrightarrow5+\dfrac{1}{x-4}\)
Để C nhỏ nhất thì \(\dfrac{1}{x-4}\)nhỏ nhất \(\Leftrightarrow x-4\) lớn nhất
PS: x càng lớn càng tốt, không tìm được x đâu.
Để A = |x-12|+|y+9|+1997 có GTNN thì |x-12| và |y+9| có GTNN
Mà |x-12| và |y+9| \(\ge\)0 nên để |x-12| và |y+9| có GTNN
Thì |x-12| = 0 \(\Rightarrow\) x - 12 = 0 \(\Leftrightarrow\) x = 0 +12 = 12
và |y+9| = 0 \(\Rightarrow\) y + 9 = 0 \(\Leftrightarrow\) y = 0 + 9 = -9
Tự học giúp bạn có được một gia tài
Jim Rohn – Triết lý cuộc đời
bài này ko hay cho lắm, cách làm cụ thể nhất trong cái nhất r` đấy
a)Ta thấy: \(\left|x-5\right|\ge0\)
\(\Rightarrow-\left|x-5\right|\le0\)
\(\Rightarrow1000-\left|x-5\right|\le1000\)
\(\Rightarrow A\le1000\)
Dấu "=" xảy ra khi \(\left|x-5\right|=0\Leftrightarrow x=5\)
Vậy \(Max_A=1000\) khi \(x=5\)
b)Ta thấy: \(\left|y-3\right|\ge0\)
\(\Rightarrow\left|y-3\right|+50\ge50\)
\(\Rightarrow B\ge50\)
Dấu "="xảy ra khi \(\left|y-3\right|=0\Leftrightarrow y=3\)
Vậy \(Min_B=50\) khi \(y=3\)
c)Ta thấy: \(\hept{\begin{cases}\left|x-100\right|\ge0\\\left|y+200\right|\ge0\end{cases}}\)
\(\Rightarrow\left|x-100\right|+\left|y+200\right|\ge0\)
\(\Rightarrow\left|x-100\right|+\left|y+200\right|-1\ge-1\)
\(\Rightarrow C\ge-1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x-100\right|=0\\\left|y+200\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=100\\y=-200\end{cases}}\)
Vậy \(Min_C=-1\) khi \(\hept{\begin{cases}x=100\\y=-200\end{cases}}\)
ta có |x+19|+|y-5|+1980 >1980
<=>|x+19|+|y-5|>0
dấu"="chỉ xảy ra <=>|x+19|=0vs|y-5|=0<=>x+19=0vsy-5=0
<=>x=-19,y=5
các bạn trả lời nhanh giúp mình nhé, ngày mai cô kiểm tra rồi