Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=19-6x-9x^2=-\left(9x^2+6x+1\right)+20=-\left(3x+1\right)^2+20\) ≤ 20
⇒ \(M_{MAX}=20."="\) xảy ra khi : \(x=-\dfrac{1}{3}\)
\(N=1+4x-x^2=-\left(x^2-4x+4\right)+5=-\left(x-2\right)^2+5\) ≤ 5
⇒ \(N_{MAX}=5."="\) xảy ra khi : \(x=2\)
\(A=2x-x^2=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1\le1\)
Vậy GTLN của A là 1 khi x = 1
\(B=-x^2-4x-y^2+2=-\left(x^2+4x+4\right)-y^2+6=-\left(x+2\right)^2-y^2+6\le6\)
Vậy GTLN của B là 6 khi x = -2; y = 0
\(C=19-6x-9x^2=-\left(9x^2+6x+1\right)+20=-\left(3x+1\right)^2+20\le20\)
Vậy GTLN của C là 20 khi x = \(-\dfrac{1}{3}\)
\(D=-4x^2-6x-4=-\left(4x^2+6x+\dfrac{9}{4}\right)-\dfrac{7}{4}=-\left(2x+\dfrac{3}{2}\right)^2-\dfrac{7}{4}\le-\dfrac{7}{4}\)
Vậy GTLN của D là \(-\dfrac{7}{4}\) khi x = \(-\dfrac{3}{4}\)
\(E=-\dfrac{1}{3}x^2+2x-5=-\dfrac{1}{3}\left(x^2-6x+9\right)-2=-\dfrac{1}{3}\left(x-3\right)^2-2\le-2\)\
Vậy GTLN của E là -2 khi x = 3
Bài 5 : a, -11-2x-x2=-(x2+2x)-11
=-(x2+2x+1)-11+1
=-(x+1)2-10\(\le-10\)
Dấu = xảy ra khi : -(x+1)2=0
\(\Leftrightarrow\)x=-1
b,-x2-5x=-(x2+5x)=-(x2+2.\(\frac{5}{2}\)x+\(\frac{25}{4}\))+\(\frac{25}{4}\)
=-(x+\(\frac{5}{2}\))2+\(\frac{25}{4}\le\frac{25}{4}\)
Dấu = xảy ra khi : -(x+\(\frac{5}{2}\))2=0
\(\Leftrightarrow\)x=\(-\frac{5}{2}\)
c, 3x-x2-7
=-(x2-3x)-7
=-(x2-2.\(\frac{3}{2}\)x+\(\frac{9}{4}\))-7+\(\frac{9}{4}\)
=-(x-\(\frac{3}{2}\))2-\(\frac{19}{4}\le-\frac{19}{4}\)
Dấu = xảy ra khi : -(x-\(\frac{3}{2}\))2=0
\(\Leftrightarrow x=\frac{3}{2}\)
a/ \(A=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)=\left[\left(x+1\right)\left(x-6\right)\right].\left[\left(x-2\right)\left(x-3\right)\right]\)
\(=\left(x^2-5x-6\right)\left(x^2-5x+6\right)=\left(x^2-5x\right)^2-36\ge-36\)
Suy ra Min A = -36 <=> \(x^2-5x=0\Leftrightarrow x\left(x-5\right)=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=5\end{array}\right.\)
b/ \(B=19-6x-9x^2=-9\left(x-\frac{1}{3}\right)^2+20\le20\)
Suy ra Min B = 20 <=> x = 1/3
a) \(A=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)\)
\(=\left[\left(x+1\right)\left(x-6\right)\right]\left[\left(x-2\right)\left(x-3\right)\right]\)
\(\left(x^2-5x-6\right)\left(x^2-5x+6\right)=\left(x^2-5x\right)^2-36\)
Vì \(\left(x^2-5x\right)^2\ge0\)
=> \(\left(x^2-5x\right)^2-36\ge-36\)
Vậy GTNN của A là -36 khi \(x^2-5x=0\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=5\end{array}\right.\)
b) \(B=19-6x-9x^2=-\left(9x^2+6x+1\right)+20=-\left(3x+1\right)^2+20\)
Vì \(-\left(3x+1\right)^2\le0\)
=> \(-\left(3x+1\right)+20\le20\)
Vậy GTLN của B là 20 khi \(x=-\frac{1}{3}\)
Bài 1:
a,\(P=x^2-2x+5=x^2-x-x+1+4=\left(x-1\right)^2+4\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2+4\ge4\)
hay \(P\ge4\) với mọi giá trị của \(x\in R\).
Để \(P=4\) thì \(\left(x-1\right)^2+4=4\)
\(\Rightarrow x-1=0\Rightarrow x=1\)
Vậy..............
b, Tương tự a.
c, \(M=x^2+y^2-x+6y+10\)
\(M=x^2-\dfrac{1}{2}x-\dfrac{1}{2}x+\dfrac{1}{4}+y^2+3y+3y+9+\dfrac{3}{4}\)
\(M=\left(x^2-\dfrac{1}{2}x-\dfrac{1}{2}x+\dfrac{1}{4}\right)+\left(y^2+3y+3y+9\right)+\dfrac{3}{4}\)
\(M=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2\ge0\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
hay \(M\ge\dfrac{3}{4}\) với mọi giá trị của \(x\in R\).
Để \(M=\dfrac{3}{4}\)thì
\(\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\y+3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)
Vậy......................
Bài 2:
a, \(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-2x-2x+4-7\right)\)
\(=-\left[\left(x-2\right)^2-7\right]\)
Với mọi giá trị của \(x\in R\) ta có:
\(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2-7\ge-7\)
\(\Rightarrow-\left[\left(x-2\right)^2-7\right]\le7\)
hay \(A\le7\) với mọi giá trị của \(x\in R\).
Để \(A=7\)thì \(\left(x-2\right)^2=0\)
\(\Rightarrow x=2\)
Vậy..................
b,c làm tương tự!
Chúc bạn học tốt!!!
Ta có: \(M=-9x^2+6x=-9x^2+6x-1+1=-\left(9x^2-6x+1\right)+1=-\left(3x-1\right)^2+1\)
Vì: \(-\left(3x-1\right)^2+1\le1\forall x\)
=> Giá trị lớn nhất của M là 1 tại \(-\left(3x-1\right)^2=0\Rightarrow x=\frac{1}{3}\)
=.= hok tốt!!
\(1,a,A=x^2-6x+25\)
\(=x^2-2.x.3+9-9+25\)
\(=\left(x-3\right)^2+16\)
Ta có :
\(\left(x-3\right)^2\ge0\)Với mọi x
\(\Rightarrow\left(x-3\right)^2+16\ge16\)
Hay \(A\ge16\)
\(\Rightarrow A_{min}=16\)
\(\Leftrightarrow x=3\)
C = \(\frac{2}{6x-5-9x^2}=\frac{2}{-\left(9x^2-6x+1\right)-4}=\frac{2}{-\left(3x-1\right)^2-4}\ge-\frac{1}{2}\forall x\)
Dấu "=" xảy ra <=> 3x - 1 = 0 =<=> x = 1/3
Vậy MinC = -1/2 khi x = 1/3
M = \(\frac{3}{2x^2+2x+3}=\frac{3}{2\left(x^2+x+\frac{1}{4}\right)+\frac{5}{2}}=\frac{3}{2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}}\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\forall x\)
Dấu "=" xảy ra <=> x + 1/2= 0 <=> x = -1/2
Vậy MaxM = 6/5 khi x = -1/2
N = x - x2 = -(x2 - x + 1/4) + 1/4 = -(x - 1/2)2 + 1/4 \(\le\)1/4 \(\forall\)x
Dấu "=" xảy ra <=> x - 1/2 = 0 <=> x = 1/2
Vậy MaxN = 1/4 khi x = 1/2
Edogawa Conan giúp em luôn bài giá trị lớn nhất luôn được không ạ?
\(M=19-6x-9x^2\)
\(-M=9x^2+6x-19\)
\(=\left(9x^2+6x+1\right)-20\)
\(=\left(3x+1\right)^2-20\)
\(Do\)\(\left(3x+1\right)^2\ge0\)\(\forall x\)
=>\(\left(3x+1\right)^2-20\ge-20\)\(\forall x\)
=>\(-M\ge-20\)\(\forall x\)
=> \(M\le20\)\(\forall x\)
Dấu = xảy ra khi:
\(\left(3x+1\right)^2=0\)
<=> \(3x+1=0\)
<=> \(3x=-1\)
<=> \(x=\frac{-1}{3}\)
Vậy \(M_{max}\)\(\le20\)\(khi\)\(x=\frac{-1}{3}\)
\(N=1+4x-x^2\)
\(-N=x^2-4x+1\)
\(=\left(x^2-4x+4\right)-3\)
\(=\left(x-2\right)^2-3\)
\(Do\)\(\left(x-2\right)^2\)\(\ge0\)\(\forall x\)
=>\(\left(x-2\right)^2-3\)\(\ge-3\)\(\forall x\)
=>\(-N\ge-3\)\(\forall x\)
=>\(N\le3\)\(\forall x\)
Dấu = xảy ra khi:
\(\left(x+2\right)^2=0\)
<=> \(x+2=0\)
<=>\(x=-2\)
Vậy \(N_{max}\)\(\le3\)\(khi\)\(x=-2\)
Chúc bạn học tốt ~! :)
+) \(M=19-6x-9x^2=-9x^2-6x+19=-\left(9x^2+6x+1\right)+20=-\left(3x+1\right)^2+20\)
Vì \(-\left(3x+1\right)^2\le0\Rightarrow M=-\left(3x+1\right)^2+20\le20\)
Dấu "=" xảy ra khi -(3x+1)2=0 <=>x=-1/3
Vậy Mmax=20 khi x=-1/3
+) \(N=1+4x-x^2=-x^2+4x+1=-\left(x^2-4x+4\right)+5=-\left(x-2\right)^2+5\)
tiếp tục giống M