Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(-x^2-2xy-y^2\right)-2y^2+\left(10x+10y\right)+4y-18\)
\(=-\left(x+y\right)^2+2\left(x+y\right).5-\left(2y^2-4y+2\right)-16\)
\(=-\left[\left(x+y\right)^2-2\left(x+y\right).5+5^2\right]-2\left(y-1\right)^2+9\)
\(=-\left(x+y-5\right)^2-2\left(y-1\right)^2+9\le9\forall x;y\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y-5=0\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5-y\\y=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=1\end{cases}}\)
Vậy \(A_{max}=9\Leftrightarrow\hept{\begin{cases}x=4\\y=1\end{cases}}\)
A = -x2 - 3y2 - 2xy + 10x + 14y - 18
A = -x2 - y2 -25 + 10x +10y -2xy -2y2 + 4y -2 + 9
A = -(x2 + y2 + ( -5 )2 - 10x - 10y + 2xy ) - 2 (y2 - 2y + 1 ) + 9
A = -( x + y - 5 )2 - 2 ( y - 1 )2 + 9
-( x + y - 5 )2 \(\le\)0 ; - 2 ( y - 1 )2 \(\le\)0
\(\Rightarrow\)A \(\le\)0 + 0 + 9 = 9
Dấu " = " xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x+y-5=0\\y-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=4\\y=1\end{cases}}}\)
Xét mẫu: \(^{-\left(x^2-2xy+10x+3y^2-14y-1983\right)}\)
\(=-\left(x^2-2x.\left(y-5\right)+\left(y-5\right)^2-\left(y-5\right)^2+3y^2-14y-1983\right)\)
\(=-\left(\left(x-y+5\right)^2-\left(y^2-10y+25\right)+3y^2-14y-1983\right)\)
\(=-\left(\left(x-y+5\right)^2-y^2+10y-25+3y^2-14y-1983\right)\)
\(=-\left(\left(x-y+5\right)^2+2y^2-4y-2008\right)\)
\(=-\left(\left(....\right)^2+2.\left(y^2-2y+1\right)-2010\right)\)
\(=\left(\left(...\right)^2+2.\left(y-1\right)^2-2010\right)\)
Mình không biết là đề có sai sót gì không, theo mình thì đến đây chứng minh được cái trong ngoặc >= 0 nhưng cái này lại >= -2010, bạn cứ soát lại nha nhỡ đâu có chỗ mình nhầm. Cách làm này là đúng, k cho mình nha
\(A=-x^2-3y^2-2xy+10x+14y-18\\ =-x^2-y^2-2y^2-2xy+10x+10y+4y-25-2+9\\ =-\left(x^2+y^2+25+2xy-10x-10y\right)-\left(2y^2-4y+2\right)+9\\ \\ =-\left(x+y-5\right)^2-2\left(y^2-2y+1\right)+9\\ =-\left(x+y-5\right)^2-2\left(y-1\right)^2+9\)Do \(-\left(x+y-5\right)^2\le0\forall x;y\)
\(-2\left(y-1\right)^2\le0\forall y\)
\(\Rightarrow-\left(x+y-5\right)^2-2\left(y-1\right)^2\le0\forall x;y\)
\(\Rightarrow A=-\left(x+y-5\right)^2-2\left(y-1\right)^2+9\le9\forall x\)
Dấu "='' xảy ra khi: \(\left\{{}\begin{matrix}-\left(x+y-5\right)^2=0\\-2\left(y-1\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y-5=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5-y\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=1\end{matrix}\right.\)
Vậy \(A_{\left(Max\right)}=9\) khi \(\left\{{}\begin{matrix}x=4\\y=1\end{matrix}\right.\)
Ta có:
\(A=1993-x^2-3y^2+2xy-10x+14y\\ =2020-\left(x^2-2xy+y^2\right)-10\left(x-y\right)-25-\left(2y^2-4y+2\right)\\ =2020-\left(x-y-5\right)^2-2\left(y-1\right)^2\)
Với mọi x; y thì \(2020-\left(x-y-5\right)^2-2\left(y-1\right)^2\ge2020\)
Để A=2020 thì
\(\left\{{}\begin{matrix}x-y=5\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=1\end{matrix}\right.\)
Vậy...
gợi ý nhé:
[-(x-y)2-10(x-y)-25] - 2(y-1)2 + 2010
= -[(x-y)+5]2 - 2(y-1)2 + 2010
tự cậu suy ra MAX nhé
chưa hiểu thì hỏi nhé