Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: (x+81)2 ≥0 (do bình phương 1 số luôn luôn lớn hơn hoặc bằng 0 vd: (-8)2=64)
<=> -(x+81)2≤ 0 ( đổi dấu do mang dấu - trước biểu thức )
<=> -(x+81)2 + 2016 ≤ 2016
Dấu "=" xảy ra khi và chỉ khi x+81=0 <=> x=-81
Vậy giá trị lớn nhất của -(x+81)2 + 2016 là 2016 <=> x=-81
Mình giải theo phương pháp lớp 7 nên ko chắc bạn có hiểu hay ko?
Mình trình bày theo trình tự đúng như ở lớp 7 có gì sau này bạn có thể làm theo trình tự đó!!!
ta có: \(B=-\left(x-2016\right)^2-3,1\) ≤ 3,1 (vì \(\left(x-2016\right)^2\)≥0 nên -\(-\left(x-2016\right)^2=< 0\))
dấu "=" xảy ra <=> x-2016=0
<=> x=2016
Vậy MaxB=-3,1 <=> x=2016
Đề GTLN A mình thấy nó sao sao ấy! Cần suy nghĩ thêm. Mà bạn cũng nên xem lại đề =))
\(B=1999+\left(x+2\right)^2+\left(y+3\right)^4\)
Ta có BĐT: Với n chẵn thì: \(a^n\ge0\)
Do vậy,ta có: \(\left(x+2\right)^2\ge0\)
\(\left(y+3\right)^4\ge0\)
Do đó \(B=1999+\left(x+2\right)^2+\left(y+3\right)^4\ge1999\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y+3\right)^4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+2=0\\y+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-3\end{cases}}}\)
Vậy \(B_{min}=1999\Leftrightarrow\hept{\begin{cases}x=-2\\y=-3\end{cases}}\)
a) Để Bmin thì GTTĐ của x + 1 bé nhất . Suy ra GTTĐ của x + 1 = 0
Suy ra x + 1 = 0 . Vậy x = -1 thì Bmin
b) Để Cmin thì GTTĐ của x - 3 ; (y+1)2 bé nhất
Suy ra GTTĐ của x - 3 = 0 và ( y+1)2 =0
+ Suy ra (y+1)2 =0 . Suy ra y+1=0.Suy ra y = -1
Vậy x = 3 , y = -1 thì Cmin
Bài 1: Tìm x,y biết (x+1)2+(y-1)2=0
vì \(\hept{\begin{cases}\left(x+1\right)^2\ge0\\\left(y-1\right)^2\ge0\end{cases}}\Rightarrow\left(x+1\right)^2+\left(y-1\right)^2\ge0\) để có dấu"=" chỉ khi cả hai số hạng cùng=0 \(\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y-1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x+1=0\\y-1=0\end{cases}}}\Rightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
Bài 2: Tìm giá trị nhỏ nhất của biểu thức
A=(n-1)2+2016
\(\left(n-1\right)^2\ge0\Rightarrow\left(n-1\right)^2+2016\ge2016\Rightarrow GTNN.A=2016\)
Bài 3: Tìm giá trị lớn nhất của biểu thức:
B=2016-(n-1).2 ; \(B=2016-\left(n-1\right).2\) Không có Gia trị Lớn nhất Vì khi n càng nhỏ hơn so với 1 B càng lớn
\(B=2016-\left(n-1\right)^2\) lập luân tương tự bài 2 GTLN B=2016
Bài 4: Chứng minh:
a, (2n+2+4n+2+2016) chia hết cho 4
\(a=2^{n+2}+4^{^{n+2}}+2016=2^2.2^n+4.4^{n+1}+4.504=4.\left(2^n+4^{n+1}+504\right)\)=> a chia hết cho 4
b, (3n+3n+1+3n+2) chia hết cho 13
\(b=3^n\left(1+3^1+3^2\right)=3^n.13=13.3^n\)=> b chia hết cho13
Bài 1:
a, Ta có: (x - 1)2 \(\ge\)0 với mọi x
=> A = (x - 1)2 + 2016 \(\ge\)2016
Dấu "=" xảy ra <=> (x-1)2 = 0 <=> x = 1
Vậy GTNN của A = 2016 tại x = 1
b, Ta có: |x + 4| \(\ge\)0 với mọi x
=> B = |x + 4| + 2017 \(\ge\)2017
Dấu "=" xảy ra <=> |x + 4| = 0 <=> x = -4
Vây GTNN của B = 2017 tại x = -4
Bài 2:
a, Ta có: (x + 1)2016 \(\ge\)0 với mọi x
=> P = 2010 - (x + 1)2016 \(\ge\)2010
Dấu "=" xảy ra <=> (x + 1)2016 = 0 <=> x = -1
Vậy GTLN của P = 2010 tại x = -1
b, Ta có: |3 - x| \(\ge\)0 với mọi x
=> Q = 2010 - |3 - x| \(\ge\)2010
Dấu "=" xảy ra <=> |3 - x| = 0 <=> x = 3
Vậy GTLN của Q = 2010 tại x = 3
*) Ta có (x+2)2 \(\ge0\forall x\)
\(\Rightarrow5-\left(x+2\right)^2\ge5\)hay \(D\ge5\)
Dấu "=" <=> (x+2)2=0
<=> x=-2
Vậy MaxD=5 đạt được khi x=-2
*) Ta có \(\left(2-y\right)^4\ge0\forall y\)
\(\Rightarrow6-3\left(2-y\right)^4\ge6\forall y\)
hay \(E\ge6\)
Dấu "=" <=> \(\left(2-y\right)^2=0\)
<=> y=2
Vậy MaxE=6 đạt đươc kho y=2
*) Ta có \(\left(x+2\right)^2\ge0\forall x\in Z\)
=> \(5-\left(x+2\right)^2\ge5-0=5\)hay D \(\ge5\)
Dấu "=" xảy ra <=> (x+2)2=0
<=> x+2=0
<=> x=-2
Vậy \(Max_D=5\)đạt được khi x=-2
*) Ta có: \(\left(2-y\right)^4\ge0\forall y\inℤ\)
=> \(3\left(2-y\right)^4\ge0\forall y\inℤ\)
=> 6-3(2-y)4 \(\ge\)6-0=6
hay E \(\ge6\). Dấu "=" xảy ra <=> 3(2-y)4=0
<=> (2-y)4=0
<=> 2-y=0
<=> y=2
vậy MaxE=6 đạt được khi y=2
Bạn à toán tìm cực trị ( tìm GTLN, GTNN, GTTĐ ) ko có trong chương trình toán 6 đâu.
Tìm cực trị chỉ có cách đơn giản nhất như câu trả lời cũ của mình thôi.
Bạn có thể kiểm chứng trên mạng bằng cách gõ: tìm giá trị lớn nhất, giá trị nhỏ nhất