Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(\left(x-3\right)^2\ge0\forall x\in R\)
\(\left(x-3\right)^2+1\ge1\)
\(\frac{1}{\left(x-3\right)^2+1}\le1\)
\(\frac{5}{\left(x-3\right)^2+1}\le5\)
vậy gtln của bt là 5 khi x = 3
vì \(\left|x+\frac{2}{3}\right|\ge0\)
\(\Rightarrow\)\(2-\left|x+\frac{2}{3}\right|\le2\)
\(\Rightarrow\)Amax = 2 \(\Leftrightarrow2-\left|x+\frac{2}{3}\right|=2\Leftrightarrow\left|x+\frac{2}{3}\right|=0\Leftrightarrow x=0-\frac{2}{3}=\frac{-2}{3}\)
tương tự như trên
a) Ta có :\(\left|3-x\right|\ge0\forall x\in R\)
Nên : \(-\left|3-x\right|\le0\forall x\in R\)
Do đó : \(Q=1010-\left|3-x\right|\le1010\forall x\in R\)
Vậy \(Q_{max}=1010\) đấu "=" xày ra khi |3 - x| = 0
<=> 3 - x = 0
<=> x = 3
b) Ta có : \(\left(3-x\right)^2\ge0\forall x\in R\)
Nên : \(\left(3-x\right)^2+1\ge1\forall x\in R\)
Suy ra : \(\frac{5}{\left(3-x\right)^2+1}\le\frac{5}{1}=5\)
Vậy \(C_{max}=5\) dấu bằng sảy ra khi (3 - x)2 + 1 = 1
<=> (3 - x)2 =0
<=> 3 - x = 0
<=> x = 3
c) Ta có : \(\left|x-2\right|\ge0\forall x\)
Nên : \(\left|x-2\right|+2\ge2\forall x\)
Suy ra : \(\left|x-2\right|+2\le\frac{4}{2}=2\forall x\)
Vậy \(D_{max}=2\) dấu "=" xảy ra khi |x - 2| + 2 = 2
<=> |x - 2| = 0
<=> x - 2 =0
<=> x = 2
a)\(Q=1010-|3-x|\)
Để Q có giá trị lớn nhất \(\Leftrightarrow|3-x|\)là số nguyên dương nhỏ nhất có thể =>\(|3-x|=1\)\(\Leftrightarrow3-x=1\Leftrightarrow x=2\)
@_@
mình chỉ làm 1 bài thôi :
\(Q=1010-\left|3-X\right|\)
trường hợp này thì |3-x| phải là số tự nhiên bé nhất => |3-x|=0
=> 3-x=0
x=3-0=3
=> x=3