Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Để giá trị biểu thức 5 – 2x là số dương
<=> 5 – 2x > 0
<=> -2x > -5 ( Chuyển vế và đổi dấu hạng tử 5 )
\(\Leftrightarrow x< \frac{5}{2}\)( Chia cả 2 vế cho -2 < 0 ; BPT đổi chiều )
Vậy : \(x< \frac{5}{2}\)
b) Để giá trị của biểu thức x + 3 nhỏ hơn giá trị biểu thức 4x - 5 thì:
x + 3 < 4x – 5
<=< x – 4x < -3 – 5 ( chuyển vế và đổi dấu các hạng tử 4x và 3 )
<=> -3x < -8
\(\Leftrightarrow x>\frac{8}{3}\)( Chia cả hai vế cho -3 < 0, BPT đổi chiều).
Vậy : \(x>\frac{8}{3}\)
c) Để giá trị của biểu thức 2x +1 không nhỏ hơn giá trị của biểu thức x + 3 thì:
2x + 1 ≥ x + 3
<=> 2x – x ≥ 3 – 1 (chuyển vế và đổi dấu các hạng tử 1 và x).
<=> x ≥ 2.
Vậy x ≥ 2.
d) Để giá trị của biểu thức x2 + 1 không lớn hơn giá trị của biểu thức (x - 2)2 thì:
x2 + 1 ≤ (x – 2)2
<=> x2 + 1 ≤ x2 – 4x + 4
<=> x2 – x2 + 4x ≤ 4 – 1 ( chuyển vế và đổi dấu hạng tử 1; x2 và – 4x).
<=> 4x ≤ 3
\(\Leftrightarrow x\le\frac{3}{4}\)( Chia cả 2 vế cho 4 > 0 )
Vậy : \(x\le\frac{3}{4}\)
\(\frac{3x-7}{21}-\frac{x\left(x-2\right)}{7}\le\frac{x-2}{3}-\frac{x\left(x+1\right)}{7}\)
\(\Leftrightarrow\frac{3x-7}{21}-\frac{3x\left(x-2\right)}{21}\le\frac{7x-14-3x\left(x+1\right)}{21}\)
\(\Leftrightarrow3x-7-3x^2+6x\le7x-14-3x^2-3x\)
\(\Leftrightarrow9x-7\le4x-14\Leftrightarrow5x\le-7\Leftrightarrow x\le-\frac{7}{5}\)
vậy tập nghiệm của bft là S = { x | x =< -7/5 }
\(\frac{3x-7}{21}-\frac{x\left(x-2\right)}{7}\le\frac{x-2}{3}-\frac{x\left(x+1\right)}{7}\)
\(< =>\frac{3x-7}{21}-\frac{3x\left(x-2\right)}{21}\le\frac{7\left(x-2\right)}{21}-\frac{3x\left(x+1\right)}{21}\)
\(< =>3x-7-3x^2+6x\le7x-14-3x^2+3x\)
\(< =>-3x^2+3x+9x-7-10x+14\le0\)
\(< =>-x-7\le0\)
\(< =>x+7\ge0< =>x\ge-7\)
vậy với x >= -7 thì ....
a, ĐKXĐ: \(x\ne-3\) và \(x\ne\pm1\)
b, \(P=\frac{x\left(x+3\right)-11+x^2-3x+9}{x^3+27}:\frac{x^2-1}{x+3}\)
\(P=\frac{2x^2-2}{x^3+27}.\frac{x+3}{x^2-1}\)
\(=\frac{2\left(x-1\right)\left(x+1\right)}{\left(x+3\right)\left(x^2-3x+9\right)}.\frac{x+3}{\left(x-1\right)\left(x+1\right)}\)
\(=\frac{2}{x^2-3x+9}\)
c, \(P=\frac{2}{x^2-3x+9}==\frac{2}{\left(x-\frac{3}{2}\right)^2+\frac{27}{4}}\le\frac{2}{\frac{27}{4}}=\frac{8}{27}\)
Dấu "=" xảy ra khi: \(x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)
Vậy P lớn nhất bằng \(\frac{8}{27}\) \(\Leftrightarrow x=\frac{3}{2}\)
\(P=\left(\frac{x}{x^2-3x+9}-\frac{11}{x^3+27}+\frac{1}{x+3}\right):\frac{x^2-1}{x+3}.\)
ĐKXĐ : \(x\ne-3;x\ne0\)
\(P=\left(\frac{x\left(x+3\right)}{\left(x+3\right)\left(x^2-3x+9\right)}-\frac{11}{\left(x+3\right)\left(x^2-3x+9\right)}+\frac{x^2-3x+9}{\left(x+3\right)\left(x^2-3x+9\right)}\right).\frac{x+3}{x^2-1}\)
\(P=\left(\frac{x^2+3x-11+x^2-3x+9}{\left(x+3\right)\left(x^2-3x+9\right)}\right).\frac{x+3}{x^2-1}\)
\(P=\frac{2x^2-2}{\left(x^2-3x+9\right)}.\frac{1}{x^2-1}=\frac{2\left(x^2-1\right)}{\left(x^2-3x+9\right)}.\frac{1}{x^2-1}\)
\(P=\frac{2}{x^2-3x+9}\)
thế này nè : vì x^2+ x+1> 0vaf x^2 + 3x + 7 >0
=> A = x^2 + x +! + x^ 2 + 3x + 7= 2x^2 + 4x + 8 , giờ thì lằm bình thường
Thái đức anh Ơ CTV là không được hỏi bài à ??? Bài này tôi làm ra lâu rồi,đăng lên chơi vui thôi nhé ! Không làm thì đừng có mà spam lung tung câu hỏi của tôi
D=(x-1)(x+5)(x-3)(x+7)
=(x2+4x-5)(x2+4x-21)
=(x2+4x-5)2-16(x2+4x-5)
=[(x2+4x-5)2-16(x2+4x-5)+64]-64>=-64
Đặt \(A=-3x\left(x+3\right)-7\)
\(=-3x^2-9x-7\)
\(\Rightarrow-A=3x^2+9x+7\)
Đến đây tìm GTNN của -A rồi tìm sang GTLN của A