K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2020

\(B=-2x^2-3x+4=-2\left(x^2+\frac{3}{2}x+\frac{9}{16}\right)+\frac{41}{8}\)

\(\Rightarrow B=-2\left(x+\frac{3}{4}\right)^2+\frac{41}{8}\le\frac{41}{8}\)

\("="\Leftrightarrow x=-\frac{3}{4}\)

15 tháng 8 2020

B = -2x2 - 3x + 5

B = -2( x2 + 3/2x + 9/16 ) + 49/8

B = -2( x + 3/4 )2 + 49/8

\(-2\left(x+\frac{3}{4}\right)^2\le0\forall x\Rightarrow-2\left(x+\frac{3}{4}\right)^2+\frac{49}{8}\le\frac{49}{8}\)

Dấu " = " xảy ra <=> x + 3/4 = 0 => x = -3/4

=> MaxB = 49/8 <=> x = -3/4

2 tháng 12 2017

x2-3.(x-1)

(x-1)2

=>x2-3

x-1

17 tháng 10 2016

a)\(A=4x^2+4x+11\)

\(=4x^2+4x+1+10\)

\(=\left(2x+1\right)^2+10\ge10\)

Dấu = khi \(x=\frac{-1}{2}\)

Vậy MinA=10 khi \(x=\frac{-1}{2}\)

b)\(B=3x^2-6x+1\)

\(=3x^2-6x+3-2\)

\(=3\left(x^2-2x+1\right)-2\)

\(=3\left(x-1\right)^2-2\ge-2\)

Dấu = khi \(x=1\)

Vậy MinB=-2 khi \(x=1\)

c)\(C=x^2-2x+y^2-4y+6\)

\(=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\)

Dấu = khi \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

Vậy MinC=1 khi \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

29 tháng 5 2016

Để A đạt GTLN

=>x2 -2x đạt giá trị dương nhỏ nhất

=>x2-2x=1

=>x2-2x-1=0

=>x=$1-\sqrt{2};\sqrt{2}+1$12;2+1

Vậy A ko xảy ra GTLN

 
29 tháng 5 2016

Để A đạt GTLN

=>x2 -2x đạt giá trị dương nhỏ nhất

=>x2-2x=1

=>x2-2x-1=0

=>x=\(1-\sqrt{2};\sqrt{2}+1\)

Vậy A ko xảy ra GTLN

3 tháng 7 2018

2/

a, \(A=2x^2+6x-5=2\left(x^2+3x-\frac{5}{2}\right)=2\left(x^2+2x\cdot\frac{3}{2}+\frac{9}{4}-\frac{19}{4}\right)=2\left[\left(x+\frac{3}{2}\right)^2-\frac{19}{4}\right]=2\left(x+\frac{3}{2}\right)^2-\frac{19}{2}\)

Vì \(\left(x+\frac{3}{2}\right)^2\ge0\Rightarrow A=\left(x+\frac{3}{2}\right)^2-\frac{19}{2}\ge-\frac{19}{2}\)

Dấu "=" xảy ra khi x=-3/2

Vậy Amin=-19/2 khi x=-3/2

b,bài này phải tìm min 

 \(B=\left(2x-x\right)\left(x+4\right)=x\left(x+4\right)=x^2+4x=x^2+4x+4-4=\left(x+2\right)^2-4\)

Vì \(\left(x-2\right)^2\ge0\Rightarrow B=\left(x-2\right)^2+4\ge4\)

Dấu "=" xảy ra khi x = 2

Vậy Bmin=4 khi x=2

31 tháng 10 2018

Bài 2)Ta có:

\(2x^2+6x-5\)

\(=2x^2+6x+\frac{9}{2}-\frac{19}{2}\)

\(=2\left(x^2+3x+\frac{9}{4}\right)-\frac{19}{2}\)

\(=2\left(x+\frac{3}{2}\right)^2-\frac{19}{2}\ge-\frac{19}{2}\)

8 tháng 7 2018

\(\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\right)\left(2-x\right)=1\)

\(x^3-3^3+x\left(2^2-x^2\right)=1\)

\(x^3-27+4x-x^3=1\)

\(4x-27=1\)

\(4x=28\)

\(x=7\)

Vậy x = 7

8 tháng 7 2018

\(\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\right)\left(2-x\right)=1\)

\(\Rightarrow x^3-3^3+x\left(2^2-x^2\right)=1\)

\(\Rightarrow x^3-27+4x-x^3=1\)

\(\Rightarrow4x-27=1\)

\(\Rightarrow4x=28\)

\(\Rightarrow x=7\)

Vậy \(x=7\)

29 tháng 12 2016

\(P=\frac{8x+12}{x^2+4}=\frac{4x^2+16-4x^2+8x-4}{x^2+4}\)

\(=4-\frac{\left(2x-2\right)^2}{x^2+4}\le4\)

Vậy GTLN là 4

28 tháng 12 2016

GTLN của P là 4