K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2016

\(Q=-x^2+6x+1=-\left(x^2-6x+9\right)+10=-\left(x-3\right)^2+10\le10\)

Dấu "=" xảy ra khi và chỉ khi x = 3

Vậy Max Q = 10 khi và chỉ khi x = 3

14 tháng 7 2016

Có: Q=x2+6x+1=(x26x1)=(x26x+910)=(x3)2+1010Q=−x2+6x+1=−(x2−6x−1)=−(x2−6x+9−10)=−(x−3)2+10≤10
=> Max Q = 10
Dấu "=" <=> x=3

23 tháng 10 2016

b) Sai đề minh sửu lại nha

\(\left(x^2+36y^2+12xy\right):\left(x+6y\right)\)

\(\Leftrightarrow\left(x+6y\right)^2:\left(x+6y\right)=x+6y\)

Tìm GTLN

\(P\left(x\right)=-2x^2+6x+2016=-2\left(x^2-3x+\frac{9}{4}\right)+\frac{4041}{2}=-2\left(x-\frac{3}{2}\right)^2+\frac{4041}{2}\)

Vì: \(-2\left(x-\frac{3}{2}\right)^2\le0\)

=> \(-2\left(x-\frac{3}{2}\right)^2+\frac{4041}{2}\le\frac{4041}{2}\)

Vậy GTLN của P(x) là \(\frac{4041}{2}\) khi \(x=\frac{3}{2}\)

2 tháng 10 2018

( x + y ) =

con chó kho co

2 tháng 10 2018

lên hỏi chị google bạn nhé

7 tháng 7 2017

1,A=(x2-6x+9)+2

=(x-3)2+2

ta thấy (x-3)2>=0 với mọi x

=>(x-3)2+2>=2 với mọi x

hay A>=2

dấu "="xảy ra x-3=0<=>x=3

vậy MinA=2 khi x=3

ý b sai đầu bài bạn nhé

C=-(x2-5x)

=-(x2-5x+25/4)+25/4

=-(x-5/2)2+25/4

ta thấy -(x-5/2)2<=0 với mọi x

=>-(x-5/2)2+25/4 <=25/4 với mọi x

hay C<=25/4

dấu "=" xảy ra khi x-5/2=0<=>x=5/2

vậy MaxC=25/4 khi x=5/2

k mk nha

7 tháng 7 2017

Ta có : A = x2 - 6x + 11

<=> A = x2 - 6x + 9 + 2 

<=> A = (x - 3)2 + 2

Mà (x - 3)2 \(\ge0\forall x\)

Nên A =  (x - 3)2 + 2 \(\ge2\forall x\)

Vậy Amin = 2 , dấu "=" xảy ra khi và chỉ khi x = 3

3 tháng 1 2021

Vừa học xong :v 

\(A=\frac{4}{4x^2-4x+7}\)

Ta có : \(4x^2-4x+7=4x^2-4x+1+6\)

\(=\left(2x-1\right)^2+6\ge6\)Do đó : 

\(\frac{4}{\left(2x-1\right)^2+6}\le\frac{4}{6}=\frac{2}{3}\)

Dấu ''='' xảy ra : <=> \(x=\frac{1}{2}\)

Vậy GTLN A = 2/3 <=> x = 1/2

3 tháng 1 2021

Ta có : 4x2 - 4x + 7

= ( 4x2 - 4x + 1 ) + 6

= ( 2x - 1 )2 + 6 ≥ 6 ∀ x

hay 4x2 - 4x + 7 ≥ 6 ∀ x

=> \(\frac{1}{4x^2-4x+7}\le\frac{1}{6}\left(\forall x\right)\)

=> \(\frac{4}{4x^2-4x+7}\le\frac{4}{6}=\frac{2}{3}\left(\forall x\right)\)

Đẳng thức xảy ra khi x = 1/2

=> MaxA = 2/3 <=> x = 1/2

TXĐ: D=[-2,2]

P'=\(1-\frac{x}{\sqrt{4-x^2}}\)

P'=0<=> \(1-\frac{x}{\sqrt{4-x^2}}=0\)=>\(\hept{\begin{cases}x=\sqrt{4-x^2}\\4-x^2>0\end{cases}}\)

\(\hept{\begin{cases}x^2=4-x^2\\x\ge0\\-2< x< 2\end{cases}}\)

=> \(x=\sqrt{2}\)

P(-2)=-2

\(P\left(\sqrt{2}\right)=2\sqrt{2}\)

P(2)=2

Vậy GTLN của P=\(2\sqrt{2}\),GTNN là -2

NV
17 tháng 4 2022

\(\dfrac{3x^2-1}{x^2+2}=\dfrac{6x^2-2}{2\left(x^2+2\right)}=\dfrac{7x^2-\left(x^2+2\right)}{2\left(x^2+2\right)}=\dfrac{7x^2}{2\left(x^2+2\right)}-\dfrac{1}{2}\ge=-\dfrac{1}{2}\)

GTNN của biểu thức là \(-\dfrac{1}{2}\), xảy ra khi \(x=0\)

Biểu thức ko tồn tại GTLN

22 tháng 8 2016

a có A = x^2+2x+5 =(x^2+2x+1)+4=(x+1)^2+4 \(\ge\)4

 Dấu bằng xảy ra <=>x+1=0 <=>x=-1

22 tháng 8 2016

\(A=x^2+2x+5=x^2+2.x+1+4=\left(x+1\right)^2+4\ge4\)

Đẳng thức xảy ra khi: \(x+1=0\Rightarrow x=-1\)

Vậy giá trị nhỏ nhất của A là 4 khi x= -1