Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(E=5-8x-x^2\)
\(=-\left(x^2+8x+16\right)+21\)
\(=-\left(x+4\right)^2+21\)
Ta có :\(-\left(x+4\right)^2\le0\Rightarrow-\left(x+4\right)^2+21\le21\)
Dấu = xảy ra \(\Leftrightarrow x+4=0\Leftrightarrow x=-4\)
Vậy \(Max_E=21\Leftrightarrow x=-4\)
\(F=4x-x^2+1\)
\(=-\left(x^2-4x+4\right)+5\)
\(=-\left(x-2\right)^2+5\)
Ta có :\(-\left(x-2\right)^2\le0\Rightarrow-\left(x-2\right)^2+5\le5\)
Dấu = xảy ra \(\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy \(Max_E=5\Leftrightarrow x=2\)
Ta có: \(E=5-8x-x^2=-x^2-8x+5=-x^2-2.4.x+16-11\)
\(=-\left(x-4\right)^2-11\le0-11=-11\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(x-4\right)^2=0\)
\(\Rightarrow x-4=0\)
\(\Rightarrow x=4\)
Vậy GTLN của E là -11 \(\Leftrightarrow x=4\)
Ta có: \(F=4x-x^2+1=-x^2+4x+1=-x^2+2.2.x+4-3\)
\(=-\left(x+2\right)^2-3\le0-3=-3\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(x+2\right)^2=0\)
\(\Rightarrow x+2=0\)
\(\Rightarrow x=-2\)
Vậy GTLN của F là -3 \(\Leftrightarrow x=-2\)
*Tìm giá trị nhỏ nhất
a) \(A=x^2-4x+1\)
Ta có: \(A=x^2-4x+1\)
\(=x^2-4x+4-5=\left(x-2\right)^2-5\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-2\right)^2-5\ge-5\forall x\)
Dấu '=' xảy ra khi \(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy: Giá trị nhỏ nhất của biểu thức \(A=x^2-4x+1\) là -5 khi x=2
b) \(B=4x^2+4x+11\)
Ta có: \(B=4x^2+4x+11\)
\(=\left(2x\right)^2+2\cdot2x\cdot1+1+10=\left(2x+1\right)^2+10\)
Ta có: \(\left(2x+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(2x+1\right)^2+10\ge10\forall x\)
Dấu '=' xảy ra khi \(\left(2x+1\right)^2=0\Leftrightarrow2x+1=0\Leftrightarrow2x=-1\Leftrightarrow x=\frac{-1}{2}\)
Vậy: Giá trị nhỏ nhất của biểu thức \(B=4x^2+4x+11\) là 10 khi \(x=\frac{-1}{2}\)
*Tìm giá trị lớn nhất
e) \(E=5-8x-x^2\)
Ta có: \(E=5-8x-x^2\)
\(=-\left(-5+8x+x^2\right)=-\left(x^2+8x-5\right)=-\left(x^2+8x+16-21\right)=-\left(x+4\right)^2+21\)
Ta có: \(\left(x+4\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x+4\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+4\right)^2+21\le21\forall x\)
Dấu '=' xảy ra khi \(\left(x+4\right)^2=0\Leftrightarrow x+4=0\Leftrightarrow x=-4\)
Vậy: Giá trị lớn nhất của biểu thức \(E=5-8x-x^2\) là 21 khi x=-4
f) \(F=4x-x^2+1\)
Ta có: \(F=4x-x^2+1\)
\(=-\left(-4x+x^2-1\right)\)
\(=-\left(x^2-4x-1\right)=-\left(x^2-4x+4-5\right)\)
\(=-\left(x-2\right)^2+5\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x-2\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-2\right)^2+5\le5\forall x\)
Dấu '=' xảy ra khi \(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy: Giá trị lớn nhất của biểu thức \(F=4x-x^2+1\) là 5 khi x=2
\(E=\frac{5}{2x^2+3x+5}=\frac{5}{2\left(x^2+2.\frac{3}{4}x+\frac{9}{16}\right)+\frac{35}{8}}=\frac{5}{2\left(x+\frac{3}{4}\right)^2+\frac{35}{8}}\le\frac{5}{\frac{35}{8}}=\frac{8}{7}\)
Nên GTLN của E là \(\frac{8}{7}\) đạt được khi x=\(-\frac{3}{4}\)
\(F=\frac{-2}{4x-x^2-5}=\frac{2}{x^2-4x+5}=\frac{2}{x^2-2.2x+4+1}=\frac{2}{\left(x-2\right)^2+1}\le\frac{2}{1}=2\)
Nên GTLN của F là 2 đạt được khi \(x=2\)
\(A=x^2-3x+5\)
\(=x^2-3x+\frac{9}{4}+\frac{11}{4}\)
\(=\left(x-\frac{3}{2}\right)^2+\frac{11}{4}\)
\(\left(x-\frac{3}{2}\right)^2\ge0\Rightarrow A\ge\frac{11}{4}\)
Dấu "=" xảy ra khi \(x-\frac{3}{2}=0\Rightarrow x=\frac{3}{2}\)
Vậy Min A = \(\frac{11}{4}\Leftrightarrow x=\frac{3}{2}\)
a) \(A=x^2-3x+5\)
\("="\Leftrightarrow x=\frac{11}{4}\Rightarrow x=\frac{3}{2};\frac{11}{4}\)
b) \(B=\left(2x-1\right)^2+\left(x+2\right)^2\)
\("="\Leftrightarrow x=5\Rightarrow x=0;5\)
c) \(C=4x-x^2+3\)
\("="\Leftrightarrow x=7\Rightarrow x=2;7\)
d) \(D=x^4+x^2+2\)
\("="\Leftrightarrow x=2\Rightarrow x=0;2\)
a) Ta có: \(2x^2+2x+3=\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.\frac{1}{\sqrt{2}}+\frac{1}{2}+\frac{5}{2}\)
\(=\left(\sqrt{2}x+\frac{1}{\sqrt{2}}\right)^2+\frac{5}{2}\ge\frac{5}{2}\)
\(\Rightarrow S\le\frac{3}{\frac{5}{2}}=\frac{6}{5}\)
Vậy \(S_{max}=\frac{6}{5}\Leftrightarrow\sqrt{2}x+\frac{1}{\sqrt{2}}=0\Leftrightarrow x=-\frac{1}{2}\)
b) Ta có: \(3x^2+4x+15=\left(\sqrt{3}x\right)^2+2.\sqrt{3}x.\frac{2}{\sqrt{3}}+\frac{4}{3}+\frac{41}{3}\)
\(=\left(\sqrt{3}x+\frac{2}{\sqrt{3}}\right)^2+\frac{41}{3}\ge\frac{41}{3}\)
\(\Rightarrow T\le\frac{5}{\frac{41}{3}}=\frac{15}{41}\)
Vậy \(T_{max}=\frac{15}{41}\Leftrightarrow\sqrt{3}x+\frac{2}{\sqrt{3}}=0\Leftrightarrow x=\frac{-2}{3}\)
c) Ta có: \(-x^2+2x-2=-\left(x^2-2x+1\right)-1\)
\(=-\left(x-1\right)^2-1\le-1\)
\(\Rightarrow V\ge\frac{1}{-1}=-1\)
Vậy \(V_{min}=-1\Leftrightarrow x-1=0\Leftrightarrow x=1\)
d) Ta có: \(-4x^2+8x-5=-\left(4x^2-8x+5\right)\)
\(=-\left(4x^2-8x+4\right)-1\)
\(=-\left(2x-2\right)^2-1\le-1\)
\(\Rightarrow X\ge\frac{2}{-1}=-2\)
Vậy \(X_{min}=-2\Leftrightarrow2x-2=0\Leftrightarrow x=1\)
\(1,a,A=x^2-6x+25\)
\(=x^2-2.x.3+9-9+25\)
\(=\left(x-3\right)^2+16\)
Ta có :
\(\left(x-3\right)^2\ge0\)Với mọi x
\(\Rightarrow\left(x-3\right)^2+16\ge16\)
Hay \(A\ge16\)
\(\Rightarrow A_{min}=16\)
\(\Leftrightarrow x=3\)
\(M=2x^2-8x+\sqrt{x^2-4x+5}+6\)
\(=2\left(x^2-4x+5\right)+\sqrt{x^2-4x+5}-4\)
Đặt \(\sqrt{x^2-4x+5}=t\)
Ta thấy \(x^2-4x+5=\left(x^2-4x+4\right)+1=\left(x+2\right)^2+1\ge1\)
Vậy nên \(\sqrt{x^2-4x+5}\ge1\Rightarrow t\ge1\)
Khi đó \(M=2t^2+t-4=2\left(t^2+\frac{1}{2}t-2\right)=2\left[\left(t^2+2.t.\frac{1}{4}+\frac{1}{16}\right)-\frac{33}{16}\right]\)
\(=2\left[\left(t+\frac{1}{4}\right)^2-\frac{33}{16}\right]=2\left(t+\frac{1}{4}\right)^2-\frac{33}{8}\)
Do \(t\ge1,\left(t+\frac{1}{4}\right)^2\ge\frac{25}{16}\)
Vậy thì \(M\ge2.\frac{25}{16}-\frac{33}{8}=-1\)
Vậy \(minM=-1\) khi t = 1
hay \(\sqrt{x^2-4x+5}=0\Rightarrow x^2-4x+5=2\Rightarrow x^2-4x+4=0\Rightarrow x=2\)
\(E=-\left(x^2+8x-5\right)=-\left(x^2+8x+16-21\right)\)
\(=-\left(x+4\right)^2+21\le21\)
vậy GTLN của E là 21 khi \(x=-4\)
\(F=-\left(x^2-4x-1\right)=-\left(x^2-4x+4-5\right)=-\left(x-2\right)^2+5\le5\)
vay.............................................