Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TÌM GIÁ TRỊ LỚN NHẤT, NHỎ NHẤT CỦA CÁC BIỂU THỨC SAU ( NẾU CÓ) :
A=X−−√+1X+1
B=3(X−−√−1)+73(X−1)+7
C=4X−2−−−−−√−34X−2−3
D=−2017x√+1−2017x+1
E=x+1√x√+2x+1x+2
F=x+2x−−√−5x+2x−5
G=1x2−4x+5√
`A=sqrt{x-2}+sqrt{6-x}(2<=x<=6)`
Áp dụng BĐT `sqrtA+sqrtB>=sqrt{A+B}`
`=>A>=sqrt{x-2+6-x}=2`
Dấu "=" `<=>x=2` hoặc `x=6`
Áp dụng BĐT bunhia
`=>A<=sqrt{2(x-2+6-x)}=2sqrt2`
Dấu "=" `<=>x=4`
`C=sqrt{1+x}+sqrt{8-x}(-1<=x<=8)`
Áp dụng BĐT `sqrtA+sqrtB>=sqrt{A+B}`
`=>A>=sqrt{1+x+8-x}=3`
Dấu "=" `<=>x=-1` hoặc `x=8`
Áp dụng BĐT bunhia
`=>A<=sqrt{2(1+x+8-x)}=3sqrt2`
Dấu "=" `<=>x=7/2`
`D=2sqrt{x+5}+sqrt{1-2x}(-5<=x<=1/2)`
`=sqrt{4x+20}+sqrt{1-2x}`
Áp dụng BĐT `sqrtA+sqrtB>=sqrt{A+B}`
`=>D>=sqrt{4x+20+1-2x}=sqrt{2x+21}`
Mà `x>=-5`
`=>D>=sqrt{-10+21}=sqrt{11}`
Dấu "=" `<=>x=-5`
a: ĐKXĐ: x>=0; x<>1
b \(A=\left(\dfrac{2\sqrt{x}+x}{x\sqrt{x}-1}-\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+2}{x+\sqrt{x}+1}\)
\(=\dfrac{x+2\sqrt{x}-x-\sqrt{x}-1}{x\sqrt{x}-1}\cdot\dfrac{x+\sqrt{x}+1}{\sqrt{x}+2}\)
\(=\dfrac{1}{\sqrt{x}+2}\)
c: Khi x=9-4 căn 5 thì \(A=\dfrac{1}{\sqrt{5}-2+2}=\dfrac{\sqrt{5}}{5}\)
d: căn x+2>=2
=>A<=1/2
Dấu = xảy ra khi x=0
f: ĐKXĐ: \(\dfrac{2x-1}{2-x}>=0\)
=>\(\dfrac{2x-1}{x-2}< =0\)
=>\(\dfrac{1}{2}< =x< 2\)
g: ĐKXĐ: \(\left\{{}\begin{matrix}x-3>=0\\5-x>0\end{matrix}\right.\Leftrightarrow3< =x< 5\)
h: ĐKXĐ: \(\left\{{}\begin{matrix}x-1>=0\\x+5>=0\end{matrix}\right.\Leftrightarrow x>=1\)
Lê Vĩnh Kỳ bn tham khảo nhé:
\(ĐK:2\le x\le4\)
\(A^2\)
\(=x-2+4-x+2\sqrt{"x-2""4-x"}\)
\(=2+2\sqrt{"x-2""4-x"}\)
\(\Leftarrow2+"x-2"+"4-x"\)BĐT Cauchy
\(\Leftarrow2+2=4\)
\(\Leftrightarrow A\le2\)
Dấu \("="\)xảy ra \(\Leftrightarrow x-2=4-x\Leftrightarrow x=3\)
Vậy GTLN của A là 2 tại \(x=3\)