Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{2a+bc}+\sqrt{2b+ca}+\sqrt{2c+ab}\)
\(=\sqrt{a\left(a+b+c\right)+bc}+\sqrt{b\left(a+b+c\right)+ca}+\sqrt{c\left(a+b+c\right)+ab}\)
\(=\sqrt{\left(a+b\right)\left(a+c\right)}+\sqrt{\left(b+a\right)\left(b+c\right)}+\sqrt{\left(c+a\right)\left(c+b\right)}\)
\(\le\frac{a+b+a+c}{2}+\frac{b+a+b+c}{2}+\frac{c+a+c+b}{2}\)
\(=2\left(a+b+c\right)=4\)
Dấu = xảy ra khi \(a=b=c=\frac{2}{3}\)
Thỏa mãn $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1$ hay $a+b+c=1$ vậy bạn?
Bạn CM \(a^5+b^5\ge ab\left(a^3+b^3\right)\)
\(\Rightarrow\frac{ab}{a^5+b^5+ab}\le\frac{1}{a^3+b^3+abc}\)
Tiếp tục \(a^3+b^3\ge ab\left(a+b\right)\)
\(\Rightarrow\frac{1}{a^3+b^3+abc}\le\frac{1}{ab\left(a+b\right)+abc}=\frac{c}{a+b+c}\)
\(\Rightarrow\frac{ab}{a^5+b^5+ab}\le\frac{c}{a+b+c}\)
Tương tự cộng lại suy ra \(VT\le1\)
Dấu = xảy ra khi a=b=c=1
Áp dụng BĐT Cauchy-Schwarz ta có:
\(P=\frac{2a}{\sqrt{1+a^2}}+\frac{b}{\sqrt{1+b^2}}+\frac{c}{\sqrt{1+c^2}}\)
\(=\frac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)
\(=\sqrt{\frac{2a}{a+b}\cdot\frac{2a}{a+c}}+\sqrt{\frac{2b}{a+b}\cdot\frac{b}{2\left(b+c\right)}}+\sqrt{\frac{2c}{a+c}\cdot\frac{c}{2\left(b+c\right)}}\)
\(\le\frac{1}{2}\left(\frac{2a}{a+b}+\frac{2b}{a+b}+\frac{2a}{a+c}+\frac{2c}{a+c}+\frac{b}{2\left(b+c\right)}+\frac{c}{2\left(b+c\right)}\right)\)
\(=\frac{1}{2}\left(2+2+\frac{1}{2}\right)=\frac{9}{4}\)
Áp dụng bđt \(\dfrac{9}{a+b+c}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
Khi đó \(\dfrac{9.ab}{a+3b+2c}=ab.\dfrac{9}{\left(a+c\right)+\left(c+b\right)+2b}\le\dfrac{ab}{a+c}+\dfrac{ab}{c+b}+\dfrac{a}{2}\)
Tương tự và cộng theo vế suy ra \(9A\le\dfrac{3\left(a+b+c\right)}{2}=9< =>A\le1\)
Dấu "=" xảy ra khi và chỉ khi a = b = c = 2
Ta có:
\(a+b+c+ab+bc+ca\ge6\sqrt[6]{a.b.c.ab.bc.ca}\)
\(=6\sqrt[6]{a^3b^3c^3}\)
\(\Rightarrow6\ge6\sqrt{abc}\)
\(\Rightarrow1\ge\sqrt{abc}\)
\(\Rightarrow1\ge abc\)
Vậy GTLN là 1 đạt được khi a = b = c = 1
cảm ơn c nhé albaba nguyễn