K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2022

\(A=\left|x-1\right|+\left|x+3\right|=\left|1-x\right|+\left|x+3\right|\)

\(A\ge\left|1-x+x+3\right|=4\)

Vậy giá trị nhỏ nhất của biểu thức A là 4.

Bài 2: 

a) Ta có: \(\left|2x-5\right|\ge0\forall x\)

\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)

\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)

10 tháng 9 2017

a, Ta có: \(A=\left|x+2\right|+\left|9-x\right|\ge\left|X+2+9-x\right|=11\)

Dấu "=' xảy ra khi \(\left(x+2\right)\left(9-x\right)\ge0\Leftrightarrow-2\le x\le9\)

Vậy MinA = 11 khi -2 =< x =< 9

b, Vì \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow B=\frac{3}{4}-\left(x-1\right)^2\le\frac{3}{4}\)

Dấu "=" xảy ra khi x = 1

Vậy MaxB = 3/4 khi x=1

10 tháng 9 2017

Ta có :\(A=\left|x+2\right|+\left|9-x\right|\ge\left|x+2+9-x\right|=11\)

Vậy \(A_{min}=11\) khi \(2\le x\le9\)

11 tháng 11 2017

Ta có \(A= \left|x-3\right|+\left|x+7\right|+\left|x+1\right|=\left(\left|x-3\right|+\left|x+7\right|\right)+\left|x+1\right|\)

\(=\left(\left|3-x\right|+\left|x+7\right|\right)+\left|x+1\right|\)

Ta thấy \(\left|3-x\right|+\left|x+7\right|\ge\left|3-x+x+7\right|=10\)

Dấu bằng xảy ra khi và chỉ khi \(\left(3-x\right).\left(x+7\right)\ge0\Leftrightarrow-7\le x\le3\)

Mà \(\left|x+1\right|\ge0\)nên \(A=\left|x-3\right|+\left|x+7\right|+\left|x+1\right|\ge0+4=4\)

Dấu bằng xảy ra khi và chỉ khi \(-7\le x\le3\)

Vậy GTNN  của A là 4 khi và chỉ khi \(-7\le x\le3\)

NM
16 tháng 12 2020

Ta có hai trường hợp như sau :

TH1

\(x-2016\ge0\Leftrightarrow x\ge2016\) thì \(A=x-2016+x-1=2x-2017\ge2.2016-2017=2015\)

TH2

\(x-2016\le0\Leftrightarrow x\le2016\) thì \(A=2016-x+x-1=2015\)

vì vậy GTNN của A=2015

dấu bằng xảy ra khi \(x\le2016\)

13 tháng 8 2019

+) Nếu\(x\ge\frac{1}{2}\)thì \(\left|x-\frac{1}{2}\right|=x-\frac{1}{2}\)

\(\Rightarrow P=x-\frac{1}{2}+\frac{3}{4}-x=\frac{1}{4}\)(1)

+) Nếu \(x< \frac{1}{2}\)thì \(\left|x-\frac{1}{2}\right|=\frac{1}{2}-x\)

\(\Rightarrow P=\frac{1}{2}-x+\frac{3}{4}-x=\frac{5}{4}-2x\)

Mà \(x< \frac{1}{2}\Leftrightarrow2x< 1\Leftrightarrow-2x>-1\Leftrightarrow\frac{5}{4}-2x>\frac{1}{4}\)(1)

Từ (1) và (2) suy ra \(P\ge\frac{1}{4}\)

\(\Rightarrow P_{min}=\frac{1}{4}\Leftrightarrow x=\frac{1}{2}\)