Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a}{b}=\frac{2}{3}\Leftrightarrow\frac{a}{2}=\frac{b}{3}\)
Mà \(\frac{a}{2}=\frac{b}{3}=\frac{a^3}{2^3}=\frac{b^3}{3^3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a^3}{2^3}=\frac{b^3}{3^3}=\frac{a^3-b^3}{2^3-3^3}=\frac{19}{8-27}=\frac{19}{-19}=-1\)
=> a = -2
b = -3
=> a + b = -2 + [-3] = -5
a) \(\left|x\right|=2,1\)
x= +- 2,1
b) \(\left|x\right|=\frac{3}{4}\left(x< 0\right)\)
x= -3/4
c) \(\left|x\right|=-1\frac{2}{5}\)
\(x\in\varphi\)
d) \(\left|x\right|=0,35\left(x>0\right)\)
\(x=0,35\)
a) |x| = 2,1 <=> \(\orbr{\begin{cases}x=2,1\\x=-2,1\end{cases}}\)
b) |x| = 3/4 <=> x = - 3/4 ( do x < 0 )
c) ko tim dc x vi |x| >= 0 voi moi x
d) |x| = 0,35 <=> x = 0,35 ( do x>0 )
\(A=\left|x-\dfrac{1}{2}\right|+\dfrac{3}{4}\\ \text{Do }\left|x-\dfrac{1}{2}\right|\ge0\forall x\\ A=\left|x-\dfrac{1}{2}\right|+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu \("="\) xảy ra khi :
\(\left|x-\dfrac{1}{2}\right|=0\\ \Leftrightarrow x-\dfrac{1}{2}=0\\ \Leftrightarrow x=\dfrac{1}{2}\)
Vậy \(A_{\left(Min\right)}=\dfrac{3}{4}\) khi \(x=\dfrac{1}{2}\)
\(B=2-\left|x+\dfrac{5}{6}\right|\\ \text{Do }\left|x+\dfrac{5}{6}\right|\ge0\forall x\\ \Rightarrow B=2-\left|x+\dfrac{5}{6}\right|\le2\forall x\)
Dấu \("="\) xảy ra khi :
\(\left|x+\dfrac{5}{6}\right|=0\\ \Leftrightarrow x+\dfrac{5}{6}=0\\ \Leftrightarrow x=-\dfrac{5}{6}\)
Vậy \(B_{\left(Max\right)}=2\) khi \(x=-\dfrac{5}{6}\)