K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2019

\(32< 2^n< 128\)

\(\Rightarrow2^5< 2^n< 2^7\)

\(\Rightarrow5< n< 7\)

mà n nguyên dương 

\(\Rightarrow n=6\)

1 .32 < 2^n < 128
=>2^5< 2^n < 2^7
=>n=6 ( n là số nguyên dương)
3. 9.27≤3 ^n ≤243
=>3^2*3^3≤3^n≤3^5
=>3^5≤3^n≤3^5
Dấu bằng xẩy ra khi n=5 (n là số nguyên dương)

14 tháng 10 2018

a)

\(2.16\ge2^n>4\)

\(\Rightarrow32\ge2^n>2^2\)

\(\Rightarrow2^5\ge2^n>2^2\)

\(\Rightarrow n\in\left\{3;4;5\right\}\)

14 tháng 10 2018

b)

\(9.27\le3^n\le243\)

\(\Rightarrow3^2.3^3\le3^n\le3^5\)

\(\Rightarrow3^5\le3^n\le3^5\)

\(\Rightarrow n=5\)

19 tháng 9 2018

Ta có :  \(2.2^4\le2^n\le256\)

\(\Rightarrow2^5\le2^n\le2^8\)

\(\Rightarrow5\le n\le8\)

\(\Rightarrow n=5;6;7;8\)  (   vì \(n\inℕ^∗\))

Vậy   \(n=5;6;7;8\)

\(2.2^4\le2^n\le256\)

\(\Rightarrow2^5\le2^n\le2^8\)

\(\Rightarrow n\in\left\{5;6;7;8\right\}\)

30 tháng 6 2015

1, 32 < 2^n < 128

    2^5 < 2^n < 2^7

=> 5 < n < 7 

Vì n là nguyên dương => n = 6 

2,  2.16 > (=) 2^n > 4 

    2.2^4 > (=) 2^n > 2^2 

  2^5 > (=) 2^n  > 2^2

 5 >(=) n > 2 => n = 5 ; 4 ; 3 

3, 9.27 < 3^n <= 243

  3^2 . 3^3 < 3^n <= 3^5

     3^5       < 3^n  <=5

   5 < n <= 5 ( không có n)