Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
HD
Ghép tạo thừa số (x+1)
làm đi không làm dduocj mình mới làm chi tiết
1. Đa thức chia có bậc là 2 nên bậc của đa thức dư không vượt quá 1
Gỉa sử \(f_{\left(x\right)}\) chia \(x^2-1\) được thương là \(g_{\left(x\right)}\) và số dư là ax+b \(\Rightarrow f_{\left(x\right)}=x^{100}+x^{99}+x^{98}+...+x^2+1=\left(x^2-1\right).g_{\left(x\right)}+\left(ax+b\right)\)
Ta có: \(f_{\left(1\right)}=1^{100}+1^{99}+...+1^2+1=\left(1^2-1\right).g_{\left(1\right)}+\left(a.1+b\right)\)
\(\Rightarrow a+b=101\) (1)
\(f_{\left(-1\right)}=\left(-1\right)^{100}+\left(-1\right)^{99}+...+\left(-1\right)+1=\left[\left(-1\right)^2-1\right].g_{\left(-1\right)}+\left[a\left(-1\right)+b\right]\)
\(\Rightarrow-a+b=1\) (2)
Từ (1) và (2) \(\Rightarrow a+b-a+b=102\Rightarrow2b=102\Rightarrow b=51\)
\(\Rightarrow-a+51=1\Rightarrow-a=-50\Rightarrow a=50\)
Vậy đa thức dư là 50x+51
2. Đa thức \(4x^3+ax+b\) chia hết cho các đa thức x-2 và x+1, mà x-2 và x+1 không có nhân tử chung có bậc khác 0 nên \(4x^3+ax+b⋮\left(x-2\right)\left(x+1\right)=x^2-x-2\)
Đặt \(4x^3+ax+b=\left(x^2-x-2\right)\left(4x+c\right)\)
\(=4x^3+cx^2-4x^2-cx-8x-2c\)
\(=4x^3+\left(c-4\right)x^2-\left(c+8\right)x-2c\)
\(\Rightarrow\left\{{}\begin{matrix}c-4=0\\c+8=-a\\-2c=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}c=4\\a=-12\\b=-8\end{matrix}\right.\Rightarrow2a-3b=2.\left(-12\right)-3.\left(-8\right)=0\)
Vậy 2a-3b=0
có f(x)=(x+1)A(x)+5f(x)=(x+1)A(x)+5
f(x)=(x2+1)B(x)+x+2f(x)=(x2+1)B(x)+x+2
do f(x) chia cho (x+1)(x2+1)(x+1)(x2+1)là bậc 3 nên số dư là bậc 2. ta có f(x)=(x+1)(x2+1)C(x)+ax2+bx+c=(x+1)(x2+1)C(x)+a(x2+1)+bx+c−af(x)=(x+1)(x2+1)C(x)+ax2+bx+c=(x+1)(x2+1)C(x)+a(x2+1)+bx+c−a
=(x2+1)(C(x).x+C(x)+a)+bx+c−a=(x2+1)(C(x).x+C(x)+a)+bx+c−a
Vậy bx+c−a=x+2⇒\hept{b=1c−a=2bx+c−a=x+2⇒\hept{b=1c−a=2
mặt khác ta có f(−1)=5⇔a−b+c=5⇒a+c=6⇒\hept{a=2c=4f(−1)=5⇔a−b+c=5⇒a+c=6⇒\hept{a=2c=4
vậy số dư trong phép chia f(x) cho x3+x2+x+1x3+x2+x+1là 2x2+x+4
a) Áp dụng đinh lý Bê-du, ta có f(x) chia x + 1 dư \(f\left(-1\right)\); bạn tự thay x = - 1 và tính kết quả đó chính là số dư.
b) Dùng phương pháp gán giá trị riêng :
Đặt \(f\left(x\right)=\left(x^2-1\right).Q\left(x\right)+R\left(x\right)\)
Do đa thức chia có bậc không quá 2 nên đa thức dư có bậc không quá 1, nên đặt \(R\left(x\right)=ax+b\)
Thay vào và có :
\(x^{100}-x^{50}+2.x^{25}-4=\left(x^2-1\right)Q\left(x\right)+ax+b\)
Lần lượt gán cho x giá trị 1 và -1
\(f\left(1\right)=1-1+2.1-4=0.Q\left(x\right)+a.1+b\)
\(\Rightarrow a+b=-2\)
\(f\left(-1\right)=1-1+2.\left(-1\right)-4=0.Q\left(x\right)+a.\left(-1\right)+b\)
\(\Rightarrow b-a=-6\)
\(\Rightarrow b=\frac{\left(-2\right)+\left(-6\right)}{2}=-\frac{8}{2}=-4\)
\(a=\left(-4\right)-\left(-6\right)=2\)
Do đó dư là \(2x-4\)
Vậy ...
= x(x^98+1)+x(x^54+1)+x(x^10+1)-2x+7
= x[(x^2)^49+1]+x[(x^2)^27+1]+x[(x^2)^5+1]-2x+7
Vì (x^2)^27+1 chi hết cho x^2+1
(x^2)^27+1 chi hết cho x^2+1
(x^2)^5+1 chia hết cho x^2+1
=> x[x^2)^49+1]+x[(x^2)^27+1]+x[(x^2)^5+1] chia hết cho x^2+1
Vậy dư trong phép chia là 7-2x
Thực hiện phép chia \(f(x)\) cho \(x-1\), ta được:
\(f(x)=(x-1)\cdot Q(x)+r\\\Rightarrow f(1)=(1-1)\cdot Q(1)+r\\\Rightarrow f(1)=r\\\Rightarrow 1^{100}+1^{99}+1^{98}+1^{97}+...+1+1=r\\\Rightarrow r=101(101.chữ.số.1)\)
Vậy số dư của phép chia $f(x)$ cho $(x-1)$ là 101.