K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2020

\(\frac{x+y}{\left(x+3\right)^2+\left(y-2\right)^2}\)

ĐKXĐ : \(\left(x+3\right)^2+\left(y-2\right)^2\ne0\)

⇔ \(\hept{\begin{cases}\left(x+3\right)^2\ne0\\\left(y-2\right)^2\ne0\end{cases}}\)

⇔ \(\hept{\begin{cases}x+3\ne0\\y-2\ne0\end{cases}}\)

⇔ \(\hept{\begin{cases}x\ne-3\\y\ne2\end{cases}}\)

30 tháng 7 2021

\(a,x^2+4x-y^2+4\)

\(=\left(x^2+4x+4\right)-y^2\)

\(=\left(x+2\right)^2-y^2\)

\(=\left(x+2-y\right)\left(x+2+y\right)\)

\(b,25-4x^2-4xy-y^2\)

\(=25-\left(4x^2+4xy+y^2\right)\)

\(=5^2-\left(2x+y\right)^2\)

\(=\left(5-2x+y\right)\left(5+2x+y\right)\)

\(c,x^3-x+y^3-y\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-xy+y^2+1\right)\)

12 tháng 9 2019

hướng dẫn

a) để phan thức xác định thì mẫu khác 0 

khi và chỉ khi 2x(x+1) khác 0 đó làm nốt

b)  =1 khi và chỉ khi 5x+5=2x^2+2x

chuyển vế -2x^2+3x+5=0 khi và chỉ khi (x+1)(-2x+5)=0 làm nốt

12 tháng 9 2019

Cho phân thức \(\frac{5x+5}{2x^2+2x}\) :

Câu a )

\(2x^2+2x=2x\left(x+1\right)\ne0\)

\(\Leftrightarrow2x\ne0\) và \(x+1\ne0\)

\(\Leftrightarrow x\ne0\) và \(x\ne-1\)

Câu b )

\(\frac{5x+5}{2x^2+2x}=\frac{5\left(x+1\right)}{2x\left(x+1\right)}=\frac{5}{2x}\)

\(\frac{5}{2x}=1\Leftrightarrow5=2x\Leftrightarrow x=\frac{5}{2}\)

Vì \(\frac{5}{2}\) thỏa mãn với điều kiện của 2 tam giác nên \(x=\frac{5}{2}\)

Chúc bạn học tốt !!!

30 tháng 7 2021

\(a,x^2+7x+7y-y^2\)

\(=x^2-y^2+7\left(x+y\right)\)

\(=\left(x-y\right)\left(x+y\right)+7\left(x+y\right)\)

\(=\left(x+y\right)\left(x-y+7\right)\)

\(b,x^2-2x-9y^2+6y\)

\(=x^2-\left(3y\right)^2-2\left(x-3y\right)\)

\(=\left(x-3y\right)\left(x+3y\right)-2\left(x-3y\right)\)

\(=\left(x-3y\right)\left(x+3y-2\right)\)

\(c,x^2-xy+x^3-3x^{2y}+3x^{2y}-y^3\)

\(=x\left(x-y\right)+\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=\left(x-y\right)\left(x+x^2+xy+y^2\right)\)

\(1,\)

\(\left(x^2-9y^2\right)\left(4x+12y\right)\)

\(=\left(x-3y\right)\left(x+3y\right)-4\left(x+3y\right)\)

\(=\left(x+3y\right)\left(x-3y-4\right)\)

\(3,\)

\(-x^2+2xy-y^2+25\)

\(=-\left(x^2-2xy+y^2\right)+25\)

\(=25-\left(x-y\right)^2\)

\(=5^2-\left(x-y\right)^2\)

\(=\left(5-x+y\right)\left(5+x-y\right)\)

6, x mũ 4 - 4x mũ 3 - 8x mũ 2 + 8x =x (x+2) (x^2-6x+4)

8, x mũ 4 + 2x mũ 3 + x mũ 2 - y mũ 2  = -(y-x^2-x) (y+x^2+x)

10, 4x mũ 2 ( x + y ) -x - y  = (2x-1) (2x+1) (y+x)

5 tháng 8 2021

f) = x2( x - 4 ) - 9( x - 4 ) = ( x - 4 )( x - 3 )( x + 3 )

g) = 4( x - y ) + ( x - y )2 = ( x - y )( x - y + 4 )

h) = x3( x + 1 ) + ( x - 1 )( x + 1 ) = ( x + 1 )( x3 + x - 1 )

i) = ( x - y )( x + y ) - 4( x + y ) = ( x + y )( x - y - 4 )

j) = ( x - y )( x2 + xy + y2 ) - 3( x - y ) = ( x - y )( x2 + xy + y2 - 3 )

5 tháng 8 2021

Trả lời:

f, x3 - 4x2 - 9x + 36 = ( x3 - 4x2 ) - ( 9x - 36 ) = x2 ( x - 4 ) - 9 ( x - 4 ) = ( x - 4 )( x2 - 9 ) = ( x - 4 )( x - 3 )( x + 3 )

g, 4x - 4y + x2 - 2xy + y2 = ( 4x - 4y ) + ( x2 - 2xy + y2 ) = 4 ( x - y ) + ( x - y )2 = ( x - y ) ( 4 + x - y )

h, x4 + x3 + x2 - 1 = ( x4 + x3 ) + ( x2 - 1 ) =  x3 ( x + 1 ) + ( x - 1 )( x + 1 ) = ( x + 1 )( x3 + x - 1 ) 

i, x2 - y2 - 4x - 4y = ( x2 - y2 ) - ( 4x + 4y ) = ( x - y )( x + y ) - 4 ( x + y ) = ( x + y )( x - y - 4 )

j, x3 - y3 - 3x + 3y = ( x3 - y3 ) - ( 3x - 3y ) = ( x - y )( x2 + xy + y2 ) - 3 ( x - y ) = ( x - y )( x2 + xy + y2 - 3 ) 

30 tháng 7 2021

1, \(x^2\left(x-3\right)-4x+12=x^2\left(x-3\right)-4\left(x-3\right)\)

\(=\left(x-2\right)\left(x+2\right)\left(x-3\right)\)

2, \(2a\left(x+y\right)-x-y=2a\left(x+y\right)-\left(x+y\right)=\left(2a-1\right)\left(x+y\right)\)

3, \(2x-4+5x^2-10x=2\left(x-2\right)+5x\left(x-2\right)=\left(2+5x\right)\left(x-2\right)\)

4, sửa đề : 

 \(6x^2-12x-7x+14=6x\left(x-2\right)-7\left(x-2\right)=\left(6x-7\right)\left(x-2\right)\)

5, \(xy-y^2-3x+3y=y\left(x-y\right)-3\left(x-y\right)=\left(y-3\right)\left(x-y\right)\)

30 tháng 7 2021

a) x2(x-3)-4x+12

=x2(x-3)-4(x-3)

=(x-3)(x2-4)

=(x-3)(x-2)(x+2)

b) 2a(x+y)-x-y

=2a(x+y)-(x+y)

=(x+y)(2a-1)

c) 2x-4+5x2-10x

=2(x-2)+5x(x-2)

=(x-2)(2+5x)

d) 5x2-12x-7x+14

=5x2-19x+14

e) xy-y2-3x+3y

=y(x-y)-3(x-y)

=(x-y)(y-3)

#H

22 tháng 9 2019

\(A=\frac{x^2+y^2-z^2+2xy}{x^2-y^2+z^2+2xz}\)

       \(=\frac{\left(x^2+2xy+y^2\right)-z^2}{\left(x^2+2xz+z^2\right)-y^2}\)

         \(=\frac{\left(x+y\right)^2-z^2}{\left(x+z\right)^2-y^2}\)

           \(=\frac{\left(x+y+z\right)\left(x+y+z\right)}{\left(x+y+z\right)\left(x-y+z\right)}\)

               \(=\frac{x+y-z}{x-y+z}\)

Ta thay : \(x=0;y=2009;z=2010\) ta được :

\(A=\frac{0+2009-2010}{0-2009+2010}=-\frac{1}{1}=-1\)

Chúc bạn học tốt !!!

22 tháng 9 2019

\(A=\frac{x^2+y^2-z^2+2xy}{x^2-y^2+z^2+2xz}=\frac{\left(x^2+2xy+y^2\right)-z^2}{\left(x^2+2xz+z^2\right)-y^2}=\frac{\left(x+y\right)^2-z^2}{\left(x+z\right)^2-y^2}\)

\(=\frac{\left(x+y+z\right)\left(x+y-z\right)}{\left(x+y+z\right)\left(x-y+z\right)}=\frac{x+y-z}{x-y+z}\)

Thay \(\hept{\begin{cases}x=0\\y=2009\\z=2010\end{cases}}\) vào biểu thức :

\(\Rightarrow A=\frac{0+2009-2010}{0-2009+2010}=-1\)

30 tháng 7 2021

6, \(x^2y+xy^2-4x-4y=xy\left(x+y\right)-4\left(x+y\right)=\left(xy-4\right)\left(x+y\right)\)

7, \(10ax-5ay-2x+y=5a\left(2x-y\right)-\left(2x-y\right)=\left(5a-1\right)\left(2x-y\right)\)

8, xem lại đề bạn nhé

9, \(4x^2-y^2+8y-16=4x^2-\left(y^2-8y+16\right)=4x^2-\left(y-4\right)^2\)

\(=\left(2x-y+4\right)\left(2x+y-4\right)\)

30 tháng 7 2021

Trả lời:

6, x2y + xy2 - 4x - 4y = ( x2y + xy2 ) - ( 4x + 4y ) = xy ( x + y ) - 4 ( x + y ) = ( x + y )( xy - 4 )

7, 10ax - 5ay - 2x + y = ( 10ax - 5ay ) - ( 2x - y ) = 5a ( 2x - y ) - ( 2x - y ) = ( 2x - y )( 5a - 1 ) 

8, Sửa đề: x3 - 2x2 + 2x - 4 = ( x3 - 2x2 ) + ( 2x - 4 ) = x2 ( x - 2 ) + 2 ( x - 2 ) = ( x - 2 )( x2 + 2 )

9, 4x2 - y2 + 8y - 16 = 4x2 - ( y2 - 8y + 16 ) = 4x2 - ( y - 4 )2 = ( 2x - y + 4 )( 2x + y - 4 )