Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hường ơi cậu biết lm bài này ko ??? Chắc bít rùi vậy chỉ tớ nhé !!!! Tớ cx ko bít lm ~~~
\(S=1+3^1+3^2+...+3^{30}\)
\(S=1+\left(3^1+3^3\right)+\left(3^2+3^4\right)+...+\left(3^{28}+3^{30}\right)\)
\(S=1+3.10+3^2.10+...+3^{28}.10\)
Có \(3.10+3^2.10+...+3^{28}.10\)có chữ số tận cùng là 0
\(\Rightarrow1+3.10+3^2.10+...+3^{28}.10\)có chữ số tận cùng là 1
=> Chữ số tận cùng của S là 1.
a) E = 7100 - 799 + 798 - 797 + ... + 72 - 7 + 1
7E = 7101 - 7100 + 799 - 798 + ... + 73 - 72 + 7
7E + E = (7101 - 7100 + 799 - 798 + ... + 73 - 72 + 7) + (7100 - 799 + 798 - 797 + ... + 72 - 7 + 1)
8E = 7101 + 1
\(E=\frac{7^{101}+1}{8}\)
b) Ta có:
8E - 1 = 7101 + 1 - 1
8E - 1 = 7101 = 72n+1
=> 2n + 1 = 101
=> 2n = 101 - 1
=> 2n = 100
=> n = 100 : 2
=> n = 50
Vậy n = 50
c) E = 7100 - 799 + 798 - 797 + ... + 72 - 7 + 1 (có 101 số; 101 chia 4 dư 1)
E = (7100 - 799 + 798 - 797) + (796 - 795 + 794 - 793) + ... + (74 - 73 + 72 - 7) + 1
E = 797.(73 - 72 + 7 - 1) + 793.(73 - 72 + 7 - 1) + ... + 7.(73 - 72 + 7 - 1) + 1
E = 797.300 + 793.300 + ... + 7.300 + 1
E = 300.(797 + 793 + ... + 7) + 1
E = (...0) + 1
E = (...1)
Thật sự ngạc nhiên khi một bài dễ như này vào câu hỏi hay :)