Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) Nhân cả hai vế của A với 3 ta được :
3A = 3 ( 3 + 32 + 33 + ..... + 32015 + 32016 )
= 32 + 33 + 34 + ..... + 32016 + 32017 ( 1 )
Trừ cả hai vế của ( 1 ) cho A ta được :
3A - A = ( 32 + 33 + 34 + ..... + 32016 + 32017 ) - ( 3 + 32 + 33 + ..... + 32015 + 32016 )
2A = 32 + 33 + 34 + ..... + 32016 + 32017 - 3 - 32 - 33 - .....- 32015 - 32016
2A = 32017 - 3 => A = \(\frac{3\left(3^{2016}-1\right)}{2}\)
b ) Ta có : 32016 = ( 32 )1008 = 91008
Vì 92n có chữ số tận cùng là 1 => 91008 có chữ số tận cùng là 1
=> 32016 có chữ số tận cùng là 1
=> 32016 - 1 có chữ số tận cùng là 0
=> 3 ( 32016 - 1 ) có chữ số tận cùng là 0
=> \(\frac{3\left(3^{2016}-1\right)}{2}\) có chữ số tân cùng là 5
c ) chịu
ta có A = 3+3^2+......+ 3^2016
=> 3A = 3^2 + 3^3 +....+ 3^2017
=> 3A -A = (3^2 + 3^3 +...+ 3^2017)- ( 3+3^2+...+ 3^2016)
=> 2A = 3^ 2017 - 3
=> A = \(\frac{3^{2017}-3}{2}\)
Ta có: \(3;3^2;3^3;...;3^{2015};3^{2016}\)đều chia hết cho \(3\)\(\Rightarrow A⋮3\)
Nhưng chỉ có \(3\)không chia hết cho \(3^2\)\(\Rightarrow A\)không chia hết cho \(3^2\)
Ta có: \(A\)chia hết cho 3 nhưng không chia hết cho \(3^2\)
nên \(A\)không phải là số chính phương
a) Ta có:
A=3+32+33+...+32015+32016A=3+32+33+...+32015+32016
⇒3A=3(3+32+33+...+32015+32016)⇒3A=3(3+32+33+...+32015+32016)
⇒3A=32+33+34+...+32016+32017⇒3A=32+33+34+...+32016+32017
⇒3A−A=(32+33+...+32017)−(3+32+...+32016)⇒3A−A=(32+33+...+32017)−(3+32+...+32016)
⇒2A=32017−3⇒A=32017−32⇒2A=32017−3⇒A=32017−32
Vậy A=32017−32A=32017−32
b) Ta có:
A=3+32+33+...+32015+32016A=3+32+33+...+32015+32016
=(3+32+33+34)+...+(32013+32014+32015+32016)=(3+32+33+34)+...+(32013+32014+32015+32016)
=3(1+3+32+33)+...+32013(1+3+32+33)=3(1+3+32+33)+...+32013(1+3+32+33)
=3.40+...+32013.40=40(3+...+32013)=3.40+...+32013.40=40(3+...+32013)
Vậy A có chữ số tận cùng là 0
c) Dễ thấy:
AA chia hết cho 33
AA không chia hết cho 3232
Mà 33 là số nguyên tố
Nên A không là số chính phương
Ta có: A = \(3+3^2+3^3+...+3^{2015}+3^{2016}\)
a) \(3A=3^2+3^3+...+3^{2016}+3^{2017}\)
\(3A-A=3^{2017}-3\)
\(2A=3^{2017}-3\)
Suy ra \(A=\frac{3^{2017}-3}{2}\)
b) \(3A=3^2+3^3+...+3^{2016}+3^{2017}\)
\(3A-A=3^{2017}-1\)
\(2A=3^{2017}-1\)
Sau đó bạn tự giải tiếp phần b)
c) Ta có: \(3;3^2;3^3;...;3^{2015};3^{2016}⋮3\Rightarrow A⋮3\)
Mà \(3⋮̸3^2\). Suy ra A không chia hết cho 32
Ta lại có: A chia hết cho 3 nhưng không chia hết cho 32
Vì thế A không phải là số chính phương
tính 3A
XONG LẤY 3A-A
LÀ RA
LM ĐC MÀ MIK K CÓ THỜI GIAN NÊN CHỈ GIÚP BN ĐC THẾ
a) \(A=3+3^2+3^3+.....+3^{2015}\)
\(\Rightarrow3A=3^2+3^3+3^4+......+3^{2016}\)
\(\Rightarrow3A-A=\left(3^2+3^3+3^4+......+3^{2016}\right)-\left(3+3^2+3^3+......+3^{2015}\right)\)
\(\Rightarrow2A=3^{2016}-3\)
\(\Rightarrow A=\frac{3^{2016}-3}{2}\)
b) Dựa vào câu a nha
A= 3 + 32 + 33 + ... + 32016
3A= 32 + 33 + ... + 32016 + 32017
3a-a= 32017 - 3
2a= 32017 - 3
a= (32017 - 3) : 2
a, 3A = 32 + 33 + 34 +...+ 32016 + 32017
3A - A = 2A = ( 32+ 33 + 34 +...+ 32016 + 32017) - (3+ 32 + 33 +...+ 32015 + 32016)
2A = 32+ 33 + 34 +...+ 32016 + 32017 - 3- 32 - 33 -...- 32015 - 32016
2A = 32017 - 3
2A = 3(32016 - 1)
A = 1,5 ( 32016 -1)
Chữ số tận cùng của \(2^{202}\) là 4.
Chữ số tận cùng của biểu thức A: là 7
ta có: 3*A = 3\(^2+3^3+....+3^{2016}+3^{2017}\Rightarrow2\cdot A=3^{2017}-3\Rightarrow A=\frac{3}{2}\)*(3\(^{2016}-1\))
TA CÓ : 3\(^{2016}\)CÓ CHỮ SỐ TẬN CÙNG LÀ 1 \(\Rightarrow3^{2016}-1\)CÓ TẬN CÙNG BẰNG O\(\Rightarrow A\)CÓ TẬN CÙNG LÀ 0.
LÍ DO VÌ 3\(^0\)CÓ TẬN CÚNG LÀ 1. 3\(^1\)CÓ TẬN CÙNG LÀ 1*3=3 . 3\(^2\)LÀ 3*3=9 LẤY 9 . 3\(^3\)LÀ 9*3=27 LẤY 7 . 3\(^4\)LÀ 7*3=21 LẤY 1 . THEO ĐÓ TA SUY RA 3\(^{2016}\)DƯ 1
Hiểu chết liền!