K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2019

                                                                   Bài giải

\(a,\text{ }4^{21}=4^{20}\cdot4=\left(4^2\right)^{10}\cdot4=\overline{\left(...6\right)}^{10}\cdot4=\overline{\left(...6\right)}\cdot4=\overline{\left(...4\right)}\)

Vậy chữ số tận cùng của \(4^{21}\) là 4

\(b,\text{ }9^{53}=9^{52}\cdot9=\left(9^2\right)^{26}\cdot9=\overline{\left(...1\right)}^{26}\cdot9=\overline{\left(...1\right)}\cdot9=\overline{\left(...9\right)}\)

Vậy chữ số tận cùng của \(9^{53}\) là 9

\(c,\text{ }3^{103}=3^{102}\cdot3=\left(3^4\right)^{34}\cdot3=\overline{\left(...1\right)}^{34}\cdot3=\overline{\left(...1\right)}\cdot3=\overline{\left(...3\right)}\)

Vậy chữ số tận cùng của \(3^{103}\) là 3

12 tháng 9 2019

                                                                   Bài giải

\(a,\text{ }4^{21}=4^{20}\cdot4=\left(4^2\right)^{10}\cdot4=\overline{\left(...6\right)}^{10}\cdot4=\overline{\left(...6\right)}\cdot4=\overline{\left(...4\right)}\)

Vậy chữ số tận cùng của \(4^{21}\) là 4

\(b,\text{ }9^{53}=9^{52}\cdot9=\left(9^2\right)^{26}\cdot9=\overline{\left(...1\right)}^{26}\cdot9=\overline{\left(...1\right)}\cdot9=\overline{\left(...9\right)}\)

Vậy chữ số tận cùng của \(9^{53}\) là 9

\(c,\text{ }3^{103}=3^{102}\cdot3=\left(3^4\right)^{34}\cdot3=\overline{\left(...1\right)}^{34}\cdot3=\overline{\left(...1\right)}\cdot3=\overline{\left(...3\right)}\)

Vậy chữ số tận cùng của \(3^{103}\) là 3

\(d,\text{ }8^{4n+1}=8^{4n}\cdot8=\left(8^4\right)^n\cdot8=\overline{\left(...6\right)}^n\cdot8=\overline{\left(...6\right)}\cdot8=\overline{\left(...8\right)}\)

Vậy chữ số tận cùng của \(8^{4n+1}\) là 8

\(e,\text{ }14^{23}+23^{23}+70^{23}=14^{22}\cdot14+23^{20}\cdot23^3+70^{23}=\left(14^2\right)^{11}\cdot14+\left(23^4\right)^5\cdot23^3+70^{23}\)

\(=\overline{\left(...6\right)}^{11}\cdot14+\overline{\left(...1\right)}^5\cdot\overline{\left(...3\right)}^3+\overline{\left(...0\right)}^{23}\)

\(=\overline{\left(...6\right)}\cdot14+\overline{\left(...1\right)}\cdot\overline{\left(...9\right)}+\overline{\left(...0\right)}\)

\(=\overline{\left(...4\right)}+\overline{\left(...9\right)}+\overline{\left(...0\right)}\)

\(=\overline{\left(...3\right)}\)

Vậy chữ số tận cùng của tổng trên là 3

5 tháng 7 2015

 

 

\(3A=3^2+3^3+3^4+...+3^{2010}\)

\(3A-A=\left(3^2+3^3+3^4+..+3^{2010}\right)-\left(3+3^2+3^3+....+3^{2009}\right)\)

\(2A=3^{2010}-3\)(1)

 

(1) => \(3^{2010}-3+3=3^{2010}\)

=> n = 2010

 

23 tháng 9 2017

A = 3 + 32 + 33 + ... + 32009

3A = 32 + 33 + 34 + ... + 32010

3A - A = (32 + 33 + 34 + ... + 32010) -  (3 + 32 + 33 + ... + 32009)

2A = 32010 - 3

3n = 2A + 3

3n = 22010 - 3 + 3

3n = 32010

n = 2010

14 tháng 2 2016

moi hok lop 6 thoi

14 tháng 2 2016

Với n = 1, ta có 
1^3 + 9.1^2 + 2.1 = 12 chia hết cho 6 
Giả sử khẳng định đúng với n = k, tức là: 
k^3 + 9k^2 + 2k chia hết 6 
Đặt k^3 + 9k^2 + 2k = 6Q 
Ta sẽ CM khẳng định đúng với n = k + 1, ta có: 
(k + 1)^3 + 9(k + 1)^2 + 2(k + 1) 
= k^3 + 3k^2 + 3k + 1 + 9k^2 + 18k + 9 + 2k + 1 
= (k^3 + 9k^2 + 2k) + 3k^2 + 18k + 3k + 12 
= 6Q + (3k^2 + 21k) + 12 
= 6Q + 3k(k + 7) + 12 
= 6Q + 3k[(k + 1) + 6] + 12 
= 6Q + 3k(k + 1) + 6.3k + 12 
Vì k và k + 1 là 2 số nguyên liên tiếp nên: 
k(k + 1) chia hết cho 2 
=> 3k(k + 1) chia hết cho 3.2 = 6 
=> 6Q + 3k(k + 1) + 6.3k + 12 chia hết cho 6 
Vậy theo nguyên lý quy nạp ta chứng minh được 
n^3 + 9n^2 + 2n chia hết 3

2 tháng 4 2016

+) Ta có:

 ta có:

m2+mn+n2=(m-n)2+3mn (*)

Nếu m2+mn+n2 chia hết cho 9 thì m+mn+n2 cũng chia hết cho 3;khi đó từ (*)=>(m-n)2 chia hết cho 3=>m-n chia hết cho 3 vì thế (m-n)2 chia hết cho 9;khi đó từ (*) ta lại có 3mn chia hết cho 9 nên mn chia hết cho 3

Do đó một trong 2 số m hay n phải chia hết cho 3 mà m-n chia hết cho 3

=>m,n  đều chia hết cho 3(đpcm)

16 tháng 11 2017

\(a,2^3.32\ge2^n>16\)

\(2^3.2^5\ge2^n>2^4\)

\(2^8\ge2^n>2^4\)

\(\Rightarrow n\in\left\{8;7;6;5\right\}\)

\(b,25< 5^n< 625\)

\(5^2< 5^n< 5^4\)

\(\Rightarrow n=3\)