Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
\(a,\text{ }4^{21}=4^{20}\cdot4=\left(4^2\right)^{10}\cdot4=\overline{\left(...6\right)}^{10}\cdot4=\overline{\left(...6\right)}\cdot4=\overline{\left(...4\right)}\)
Vậy chữ số tận cùng của \(4^{21}\) là 4
\(b,\text{ }9^{53}=9^{52}\cdot9=\left(9^2\right)^{26}\cdot9=\overline{\left(...1\right)}^{26}\cdot9=\overline{\left(...1\right)}\cdot9=\overline{\left(...9\right)}\)
Vậy chữ số tận cùng của \(9^{53}\) là 9
\(c,\text{ }3^{103}=3^{102}\cdot3=\left(3^4\right)^{34}\cdot3=\overline{\left(...1\right)}^{34}\cdot3=\overline{\left(...1\right)}\cdot3=\overline{\left(...3\right)}\)
Vậy chữ số tận cùng của \(3^{103}\) là 3
Bài giải
\(a,\text{ }4^{21}=4^{20}\cdot4=\left(4^2\right)^{10}\cdot4=\overline{\left(...6\right)}^{10}\cdot4=\overline{\left(...6\right)}\cdot4=\overline{\left(...4\right)}\)
Vậy chữ số tận cùng của \(4^{21}\) là 4
\(b,\text{ }9^{53}=9^{52}\cdot9=\left(9^2\right)^{26}\cdot9=\overline{\left(...1\right)}^{26}\cdot9=\overline{\left(...1\right)}\cdot9=\overline{\left(...9\right)}\)
Vậy chữ số tận cùng của \(9^{53}\) là 9
\(c,\text{ }3^{103}=3^{102}\cdot3=\left(3^4\right)^{34}\cdot3=\overline{\left(...1\right)}^{34}\cdot3=\overline{\left(...1\right)}\cdot3=\overline{\left(...3\right)}\)
Vậy chữ số tận cùng của \(3^{103}\) là 3
\(d,\text{ }8^{4n+1}=8^{4n}\cdot8=\left(8^4\right)^n\cdot8=\overline{\left(...6\right)}^n\cdot8=\overline{\left(...6\right)}\cdot8=\overline{\left(...8\right)}\)
Vậy chữ số tận cùng của \(8^{4n+1}\) là 8
\(e,\text{ }14^{23}+23^{23}+70^{23}=14^{22}\cdot14+23^{20}\cdot23^3+70^{23}=\left(14^2\right)^{11}\cdot14+\left(23^4\right)^5\cdot23^3+70^{23}\)
\(=\overline{\left(...6\right)}^{11}\cdot14+\overline{\left(...1\right)}^5\cdot\overline{\left(...3\right)}^3+\overline{\left(...0\right)}^{23}\)
\(=\overline{\left(...6\right)}\cdot14+\overline{\left(...1\right)}\cdot\overline{\left(...9\right)}+\overline{\left(...0\right)}\)
\(=\overline{\left(...4\right)}+\overline{\left(...9\right)}+\overline{\left(...0\right)}\)
\(=\overline{\left(...3\right)}\)
Vậy chữ số tận cùng của tổng trên là 3
\(3A=3^2+3^3+3^4+...+3^{2010}\)
\(3A-A=\left(3^2+3^3+3^4+..+3^{2010}\right)-\left(3+3^2+3^3+....+3^{2009}\right)\)
\(2A=3^{2010}-3\)(1)
(1) => \(3^{2010}-3+3=3^{2010}\)
=> n = 2010
A = 3 + 32 + 33 + ... + 32009
3A = 32 + 33 + 34 + ... + 32010
3A - A = (32 + 33 + 34 + ... + 32010) - (3 + 32 + 33 + ... + 32009)
2A = 32010 - 3
3n = 2A + 3
3n = 22010 - 3 + 3
3n = 32010
n = 2010
Với n = 1, ta có
1^3 + 9.1^2 + 2.1 = 12 chia hết cho 6
Giả sử khẳng định đúng với n = k, tức là:
k^3 + 9k^2 + 2k chia hết 6
Đặt k^3 + 9k^2 + 2k = 6Q
Ta sẽ CM khẳng định đúng với n = k + 1, ta có:
(k + 1)^3 + 9(k + 1)^2 + 2(k + 1)
= k^3 + 3k^2 + 3k + 1 + 9k^2 + 18k + 9 + 2k + 1
= (k^3 + 9k^2 + 2k) + 3k^2 + 18k + 3k + 12
= 6Q + (3k^2 + 21k) + 12
= 6Q + 3k(k + 7) + 12
= 6Q + 3k[(k + 1) + 6] + 12
= 6Q + 3k(k + 1) + 6.3k + 12
Vì k và k + 1 là 2 số nguyên liên tiếp nên:
k(k + 1) chia hết cho 2
=> 3k(k + 1) chia hết cho 3.2 = 6
=> 6Q + 3k(k + 1) + 6.3k + 12 chia hết cho 6
Vậy theo nguyên lý quy nạp ta chứng minh được
n^3 + 9n^2 + 2n chia hết 3
+) Ta có:
ta có:
m2+mn+n2=(m-n)2+3mn (*)
Nếu m2+mn+n2 chia hết cho 9 thì m2 +mn+n2 cũng chia hết cho 3;khi đó từ (*)=>(m-n)2 chia hết cho 3=>m-n chia hết cho 3 vì thế (m-n)2 chia hết cho 9;khi đó từ (*) ta lại có 3mn chia hết cho 9 nên mn chia hết cho 3
Do đó một trong 2 số m hay n phải chia hết cho 3 mà m-n chia hết cho 3
=>m,n đều chia hết cho 3(đpcm)
\(a,2^3.32\ge2^n>16\)
\(2^3.2^5\ge2^n>2^4\)
\(2^8\ge2^n>2^4\)
\(\Rightarrow n\in\left\{8;7;6;5\right\}\)
\(b,25< 5^n< 625\)
\(5^2< 5^n< 5^4\)
\(\Rightarrow n=3\)